This adds support to the load->struct_extract canonicalization for
nontrivial element types which look like:
load [copy]
borrow
struct_extract
...uses...
end_borrow
destroy
It does not take ownership of its non-trivial arguments, is a trivial
function type and therefore must not be destroyed. The compiler must
make sure to extend the lifetime of non-trivial arguments beyond the
last use of the closure.
%objc = copy_value %0 : $AnObject
%closure = partial_apply [stack] [callee_guaranteed] %16(%obj) : $@convention(thin) (@guaranteed AnObject) -> ()
%closure2 = mark_dependence %closure : $@noescape @callee_guaranteed () -> () on %obj : $AnObject
%user = function_ref @useClosure : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
apply %user(%closure2) : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
dealloc_stack %closure : $() ->()
destroy_value %obj : $AnObject // noescape closure does not take ownership
SR-904
rdar://35590578
Adds a stat to SILInstruction's transferNodesFromList to record the
number of times an instruction is transfered to another block. This is
the only way I can think of to detect quadratic behavior of passes
that split basic blocks.
I believe that these were in SILInstruction for historic reasons. This is a
separate API on top of SILInstruction so it makes sense to pull it out into its
own header.
These are trivial functions and should be inlined away; the only
tricky bit is they need to be defined after the iterator type.
This gives a slight speedup of stdlib compilation time (about 5%
of the time spent generating the swiftmodule).
This flag supports promoting KeyPath access violations to an error in
Swift 4+, while building the standard library in Swift 3 mode. This is
only necessary as long as the standard library continues to build in
Swift 3 mode. Once the standard library build migrates, it can all be
ripped out.
<rdar://problem/40115738> [Exclusivity] Enforce Keypath access as an error, not a warning in 4.2.
No major change in execution time, but why make things more
complicated than they need to be? It does make
SILInstructionResultArray::begin drop out of the top ten functions in
the inverted call stack (not counting performLLVM).
In a non-rigorous test, this change shaves off 20% of the time spent
in SIL optimizations for the standard library in a +Asserts build.
(Admittedly the wins for a no-asserts build will be much lower because
SILInstructionResultArray has a bunch of assertions in its
constructor.)
This statically guarantees that the access has no inner conflict within
its own scope.
IRGen will turn this into a "nontracking" access in which an
exclusivity check is performed for conflicts on an outer scope. However,
unlike normal accesses the runtime does not record the access, and the
access will not be checked for subsequent conflicts.
end_unpaired_access [no_nested_conflict] is not currently
supported. Making a begin_unpaired_access [no_nested_conflict] requires
deleting the corresponding end_unpaired_access. Future runtimes
could support this for verification by storing inline data in the
valud buffer. However, the runtime can never assume that a
[no_nested_conflict] begin_unpaired_access will have a corresponding
end_unpaired_access call without adding a new ExclusivityFlag for
that purpose.
Will be used to verify that withoutActuallyEscaping's block does not
escape the closure.
``%escaping = is_escaping_closure %closure`` tests the reference count. If the
closure is not uniquely referenced it prints out and error message and
returns true. Otherwise, it returns false. The returned result can be
used with a ``cond_fail %escaping`` instruction to abort the program.
rdar://35525730
@noescape function types will eventually be trivial. A
convert_escape_to_noescape instruction does not take ownership of its
operand. It is a projection to the trivial value carried by the closure
-- both context and implementation function viewed as a trivial value.
A safe SIL program must ensure that the object that the project value is based
on is live beyond the last use of the trivial value. This will be
achieve by means of making the lifetimes dependent.
For example:
%e = partial_apply [callee_guaranteed] %f(%z) : $@convention(thin) (Builtin.Int64) -> ()
%n = convert_escape_to_noescape %e : $@callee_guaranteed () -> () to $@noescape @callee_guaranteed () -> ()
%n2 = mark_dependence %n : $@noescape @callee_guaranteed () -> () on %e : $@callee_guaranteed () -> ()
%f2 = function_ref @use : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
apply %f2(%n2) : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
release_value %e : $@callee_guaranteed () -> ()
Note: This is not yet actually used.
Part of:
SR-5441
rdar://36116691
* Reduce array abstraction on apple platforms dealing with literals
Part of the ongoing quest to reduce swift array literal abstraction
penalties: make the SIL optimizer able to eliminate bridging overhead
when dealing with array literals.
Introduce a new classify_bridge_object SIL instruction to handle the
logic of extracting platform specific bits from a Builtin.BridgeObject
value that indicate whether it contains a ObjC tagged pointer object,
or a normal ObjC object. This allows the SIL optimizer to eliminate
these, which allows constant folding a ton of code. On the example
added to test/SILOptimizer/static_arrays.swift, this results in 4x
less SIL code, and also leads to a lot more commonality between linux
and apple platform codegen when passing an array literal.
This also introduces a couple of SIL combines for patterns that occur
in the array literal passing case.
I also used this as an opportunity to make SILInstructionResultArray::iterator
not inherit from std::iterator given that std::iterator is now deprecated.
Just slicing code off a larger commit.
rdar://31521023
I am doing this to ensure that parts of the optimizer that have not yet been
updated for such operations do not see said instructions. This will ensure no
surprise perf regressions from this work.
rdar://31521023
The reason that I am doing this is in preparation for adding support for
MultipleValueInstruction. This enables us to avoid type issues and also ensures
that we do not increase the size of SingleValueInstruction while we are doing
it.
The MultipleValueInstruction commit will come soon.
rdar://31521023
This replaces the '[volatile]' flag. Now, class_method and
super_method are only used for vtable dispatch.
The witness_method instruction is still overloaded for use
with both ObjC protocol requirements and Swift protocol
requirements; the next step is to make it only mean the
latter, also using objc_method for ObjC protocol calls.
introduce a common superclass, SILNode.
This is in preparation for allowing instructions to have multiple
results. It is also a somewhat more elegant representation for
instructions that have zero results. Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction. Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.
A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.
Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
This patch implements collection and dumping of statistics about SILModules, SILFunctions and memory consumption during the execution of SIL optimization pipelines.
The following statistics can be collected:
* For SILFunctions: the number of SIL basic blocks, the number of SIL instructions, the number of SIL instructions of a specific kind, duration of a pass
* For SILModules: the number of SIL basic blocks, the number of SIL instructions, the number of SIL instructions of a specific kind, the number of SILFunctions, the amount of memory used by the compiler, duration of a pass
By default, any collection of statistics is disabled to avoid affecting compile times.
One can enable the collection of statistics and dumping of these statistics for the whole SILModule and/or for SILFunctions.
To reduce the amount of produced data, one can set thresholds in such a way that changes in the statistics are only reported if the delta between the old and the new values are at least X%. The deltas are computed as using the following formula:
Delta = (NewValue - OldValue) / OldValue
Thresholds provide a simple way to perform a simple filtering of the collected statistics during the compilation. But if there is a need for a more complex analysis of collected data (e.g. aggregation by a pipeline stage or by the type of a transformation), it is often better to dump as much data as possible into a file using e.g. -sil-stats-dump-all -sil-stats-modules -sil-stats-functions and then e.g. use the helper scripts to store the collected data into a database and then perform complex queries on it. Many kinds of analysis can be then formulated pretty easily as SQL queries.
Remove the cast consumption kind from all unconditional casts. It
doesn't make sense for unconditional casts, complicates SIL ownership,
and wasn't fully supported for all variants. Copies should be
explicit.