LLVM r299341 removed the llvm::integerPart typedef and replaced it
with llvm::APInt::WordType. The integerPartWidth constant was replaced
by llvm::APInt::APINT_BITS_PER_WORD.
This commit does a few things:
1. It uses SwitchEnumBuilder so we are not re-inventing any wheels.
2. Instead of hacking around not putting in a destroy for .None on the fail
pass, just *do the right thing* and recognize that we have a binary case enum
and in such a case, just emit code for the other case rather than use a default
case (meaning no cleanup on .none).
rdar://31145255
A lot of files transitively include Expr.h, because it was
included from SILInstruction.h, SILLocation.h and SILDeclRef.h.
However in reality most of these files don't do anything
with Exprs, especially not anything in IRGen or the SILOptimizer.
Now we're down to 171 files in the frontend which depend on
Expr.h, which is still a lot but much better than before.
Once we move to a copy-on-write implementation of existential value buffers we
can no longer consume or destroy values of an opened existential unless the
buffer is uniquely owned.
Therefore we need to track the allowed operation on opened values.
Add qualifiers "mutable_access" and "immutable_access" to open_existential_addr
instructions to indicate the allowed access to the opened value.
Once we move to a copy-on-write implementation, an "open_existential_addr
mutable_access" instruction will ensure unique ownership of the value buffer.
SubstitutionList is going to be a more compact representation of
a SubstitutionMap, suitable for inline allocation inside another
object.
For now, it's just a typedef for ArrayRef<Substitution>.
When lowering closures, we avoid capturing the enclosing generic context when possible. However, the generic context may still be necessary to canonicalize types mentioned inside the closure, such as when an associated type is referred to that is same-typed to a concrete type. Fixes rdar://problem/30254048.
Not sure why but this was another "toxic utility method".
Most of the usages fell into one of three categories:
- The base value was always non-null, so we could just call
getCanonicalType() instead, making intent more explicit
- The result was being compared for equality, so we could
skip canonicalization and call isEqual() instead, removing
some boilerplate
- Utterly insane code that made no sense
There were only a couple of legitimate uses, and even there
open-coding the conditional null check made the code clearer.
Also while I'm at it, make the SIL open archetypes tracker
more typesafe by passing around ArchetypeType * instead of
Type and CanType.
Changes:
* Terminate all namespaces with the correct closing comment.
* Make sure argument names in comments match the corresponding parameter name.
* Remove redundant get() calls on smart pointers.
* Prefer using "override" or "final" instead of "virtual". Remove "virtual" where appropriate.
This is a NFC change since the constructors of LoadInst, StoreInst always set
the ownership qualifiers to unqualified by default. There are no external users
to LoadInst, StoreInst of this code.
rdar://28685236
This is a cleanup for SILParsing/Printing. I verified that everything was
spelled correctly by taking the current parsing switch moving that into a file,
regenerating it using the .def file and then diffed them. The diff was the same.
rdar://28685236
It's the same thing as for alloc_ref: the optional [tail_elems ...] attribute specify the tail elements to allocate.
For details see docs/SIL.rst
This feature is needed so that we can allocate a MangedBuffer with alloc_ref_dynamic.
The ManagedBuffer.create() function uses the dynamic self type to create the buffer instance.
- We were bailing out if the partial_apply's substitutions
contained archetypes, but there was no inherent reason
to do this. After fixing an issue with opened existential
tracking, this started to work.
- We were also bailing out if the callee was not a static
function_ref. Again, there's no reason to do this, because
we also emit partial_apply to form closures from
class_method and witness_method calls.
- There was a bug in the code for extending lifetimes of
@in parameters. Even if a parameter was an input parameter
to the method and not an alloc_stack, we have to copy
it into a new alloc_stack, because there might be
multiple invocations of an apply for a single partial_apply.
- There was also a bug where we would proceed to apply the
peephole to @unowned_inner_pointer functions, which is wrong.
IRGen's lowering of partial_apply has special handling there
and the resulting function type has an @owned result.
The new instructions are: ref_tail_addr, tail_addr and a new attribute [ tail_elems ] for alloc_ref.
For details see docs/SIL.rst
As these new instructions are not generated so far, this is a NFC.
The new instructions are: ref_tail_addr, tail_addr and a new attribute [ tail_elems ] for alloc_ref.
For details see docs/SIL.rst
As these new instructions are not generated so far, this is a NFC.
This establishes a real def-use relation from the self-parameter to any instruction which uses the dynamic-self type.
This is an addition to what was already done for opened archetypes.
The biggest part of this commit is to rename "OpenedArchetypeOperands" to "TypeDependentOperands" as this name is now more appropriate.
Other than that the change includes:
*) type-dependent operands are now printed after a SIL instruction in a comment as "type-defs:" (for debugging)
*) FuncationSignatureOpts doesn't need to explicitly check if a function doesn't bind dynamic self to remove a dead self metadata argument
*) the check if a function binds dynamic self (used in the inliner) is much simpler now
*) also collect type-dependent operands for ApplyInstBase::SubstCalleeType and not only in the substitution list
*) with this SILInstruction::mayHaveOpenedArchetypeOperands (used in CSE) is not needed anymore and removed
*) add type dependent operands to dynamic_method instruction
Regarding the generated code it should be a NFC.
Till now there was no way in SIL to explicitly express a dependency of an instruction on any opened archetypes used by it. This was a cause of many errors and correctness issues. In many cases the code was moved around without taking into account these dependencies, which resulted in breaking the invariant that any uses of an opened archetype should be dominated by the definition of this archetype.
This patch does the following:
- Map opened archetypes to the instructions defining them, i.e. to open_existential instructions.
- Introduce a helper class SILOpenedArchetypesTracker for creating and maintaining such mappings.
- Introduce a helper class SILOpenedArchetypesState for providing a read-only API for looking up available opened archetypes.
- Each SIL instruction which uses an opened archetype as a type gets an additional opened archetype operand representing a dependency of the instruction on this archetype. These opened archetypes operands are an in-memory representation. They are not serialized. Instead, they are re-constructed when reading binary or textual SIL files.
- SILVerifier was extended to conduct more thorough checks related to the usage of opened archetypes.
Till now there was no way in SIL to explicitly express a dependency of an instruction on any opened archetypes used by it. This was a cause of many errors and correctness issues. In many cases the code was moved around without taking into account these dependencies, which resulted in breaking the invariant that any uses of an opened archetype should be dominated by the definition of this archetype.
This patch does the following:
- Map opened archetypes to the instructions defining them, i.e. to open_existential instructions.
- Introduce a helper class SILOpenedArchetypesTracker for creating and maintaining such mappings.
- Introduce a helper class SILOpenedArchetypesState for providing a read-only API for looking up available opened archetypes.
- Each SIL instruction which uses an opened archetype as a type gets an additional opened archetype operand representing a dependency of the instruction on this archetype. These opened archetypes operands are an in-memory representation. They are not serialized. Instead, they are re-constructed when reading binary or textual SIL files.
- SILVerifier was extended to conduct more thorough checks related to the usage of opened archetypes.
Till now there was no way in SIL to explicitly express a dependency of an instruction on any opened archetypes used by it. This was a cause of many errors and correctness issues. In many cases the code was moved around without taking into account these dependencies, which resulted in breaking the invariant that any uses of an opened archetype should be dominated by the definition of this archetype.
This patch does the following:
- Map opened archetypes to the instructions defining them, i.e. to open_existential instructions.
- Introduce a helper class SILOpenedArchetypesTracker for creating and maintaining such mappings.
- Introduce a helper class SILOpenedArchetypesState for providing a read-only API for looking up available opened archetypes.
- Each SIL instruction which uses an opened archetype as a type gets an additional opened archetype operand representing a dependency of the instruction on this archetype. These opened archetypes operands are an in-memory representation. They are not serialized. Instead, they are re-constructed when reading binary or textual SIL files.
- SILVerifier was extended to conduct more thorough checks related to the usage of opened archetypes.
Now that ObjC types can be generic, we need to satisfy the type system by plumbing pseudogeneric parameters through func-to-block invocation thunks. Fixes rdar://problem/26524763.