This disables a bunch of passes when ownership is enabled. This will allow me to
keep transparent functions in ossa and skip most of the performance pipeline without
being touched by passes that have not been updated for ownership.
This is important so that we can in -Onone code import transparent functions and
inline them into other ossa functions (you can't inline from ossa => non-ossa).
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
All this does is automate the creation of the ${DIRNAME}_SOURCES variables that we already create and allows for the author to avoid having to prefix with the directory name, i.e.:
set(FOOBAR_SOURCES
FooBar/Source.cpp
PARENT_SCOPE)
=>
silopt_register_sources(
Source.cpp)
Much easier and cleaner to read. I put the code that implements this in the
CMakeLists.txt file just for the SILOptimizer.
introduce a common superclass, SILNode.
This is in preparation for allowing instructions to have multiple
results. It is also a somewhat more elegant representation for
instructions that have zero results. Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction. Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.
A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.
Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
At some point, pass definitions were heavily macro-ized. Pass
descriptive names were added in two places. This is not only redundant
but a source of confusion. You could waste a lot of time grepping for
the wrong string. I removed all the getName() overrides which, at
around 90 passes, was a fairly significant amount of code bloat.
Any pass that we want to be able to invoke by name from a tool
(sil-opt) or pipeline plan *should* have unique type name, enum value,
commend-line string, and name string. I removed a comment about the
various inliner passes that contradicted that.
Side note: We should be consistent with the policy that a pass is
identified by its type. We have a couple passes, LICM and CSE, which
currently violate that convention.
Separate formal lowered types from SIL types.
The SIL type of an argument will depend on the SIL module's conventions.
The module conventions are determined by the SIL stage and LangOpts.
Almost NFC, but specialized manglings are broken incidentally as a result of
fixes to the way passes handle book-keeping of aruments. The mangler is fixed in
the subsequent commit.
Otherwise, NFC is intended, but quite possible do to rewriting the logic in many
places.
For a long time, we have:
1. Created methods on SILArgument that only work on either function arguments or
block arguments.
2. Created code paths in the compiler that only allow for "function"
SILArguments or "block" SILArguments.
This commit refactors SILArgument into two subclasses, SILPHIArgument and
SILFunctionArgument, separates the function and block APIs onto the subclasses
(leaving the common APIs on SILArgument). It also goes through and changes all
places in the compiler that conditionalize on one of the forms of SILArgument to
just use the relevant subclass. This is made easier by the relevant APIs not
being on SILArgument anymore. If you take a quick look through you will see that
the API now expresses a lot more of its intention.
The reason why I am performing this refactoring now is that SILFunctionArguments
have a ValueOwnershipKind defined by the given function's signature. On the
other hand, SILBlockArguments have a stored ValueOwnershipKind. Rather than
store ValueOwnershipKind in both instances and in the function case have a dead
variable, I decided to just bite the bullet and fix this.
rdar://29671437
Changes:
* Terminate all namespaces with the correct closing comment.
* Make sure argument names in comments match the corresponding parameter name.
* Remove redundant get() calls on smart pointers.
* Prefer using "override" or "final" instead of "virtual". Remove "virtual" where appropriate.
This was already done for getSuccessorBlocks() to distinguish getting successor
blocks from getting the full list of SILSuccessors via getSuccessors(). This
commit just makes all of the successor/predecessor code follow that naming
convention.
Some examples:
getSingleSuccessor() => getSingleSuccessorBlock().
isSuccessor() => isSuccessorBlock().
getPreds() => getPredecessorBlocks().
Really, IMO, we should consider renaming SILSuccessor to a more verbose name so
that it is clear that it is more of an internal detail of SILBasicBlock's
implementation rather than something that one should consider as apart of one's
mental model of the IR when one really wants to be thinking about predecessor
and successor blocks. But that is not what this commit is trying to change, it
is just trying to eliminate a bit of technical debt by making the naming
conventions here consistent.
Before this commit all code relating to handling arguments in SILBasicBlock had
somewhere in the name BB. This is redundant given that the class's name is
already SILBasicBlock. This commit drops those names.
Some examples:
getBBArg() => getArgument()
BBArgList => ArgumentList
bbarg_begin() => args_begin()
I see some small performance improvements on a few benchmarks, but they
are likely to be due to noise.
The compilation pipeline is very epilogue release friendly at the moment,i.e.
we do not move the epilogue release of a function till very late in the pipeline.
Therefore, this global data flow sort of an overkill. I am going to change
the pass pipeline next so that we can move epilogue releases freely and the data
flow will become useful.
I do not see compilation time increase.
rdar://26446587
As promised, we separate the duty of moving retain release pairs with the
task of removing them. Now the task of moving retains and releases are in
Retain Release Code Motion committed in 51b1c0bc68.
The reason why this is true is that we know that a guaranteed parameter must out
live the current function. That means that no releases on that guaranteed
parameter can be "last" releases.
rdar://25091228
Previously due to the way that ARC works, it was impossible to trigger any
memory safety issues. That being said the fact that the memory safety here is
non-obvious suggests that the right thing to do is just bite the bullet and
clear the ImmutablePointerSetFactory.
We were using a stripCast in some places and getRCIdentityRoot in others.
stripCasts is not identical to getRCIdentityRoot.
In particular, it does not look through struct_extract, tuple_extract,
unchecked_enum_data.
Created a struct and tuple test cases for make sure things are optimized
as they should be.
We have test case for unchecked_enum_data before.
We were giving special handling to ApplyInst when we were attempting to use
getMemoryBehavior(). This commit changes the special handling to work on all
full apply sites instead of just AI. Additionally, we look through partial
applies and thin to thick functions.
I also added a dumper called BasicInstructionPropertyDumper that just dumps the
results of SILInstruction::get{Memory,Releasing}Behavior() for all instructions
in order to verify this behavior.
remove the mixed concept that was SILFileLocation.
Also add support for a third type of underlying storage that will be used
for deserialized debug lcoations from textual SIL.
NFC
<rdar://problem/22706994>
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.
The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results. It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.
The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*. The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list. The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.
A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple. It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.
Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction. It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.
The reason why this work is not needed is that ARC before any dataflow is
performed first summarizes the interesting instructions in all blocks. This
information is kept up to date by the ARC optimizer as it moves around
retains/releases.
Thus while performing dataflow, all we need to summarize are loops.
Tested via static assert.
There is no reason for these data structures to not have these properties.
Adding these properties will improve the compile time efficiency of ARC by
allowing for cheaper copying and 0 cost destruction.