The client of this interface naturally expects to get back the
incoming phi value. Ignoring dominance and SIL ownership, the incoming
phi value and the block argument should be substitutable.
This method was actually returning the incoming operand for
checked_cast and switch_enum terminators, which is deeply misleading
and has been the source of bugs.
If the client wants to peek though casts, and enums, it should do so
explicitly. getSingleTerminatorOperand[s]() will do just that.
The actual algorithm used here has not changed at all so this is basically a NFC
commit. What this PR does is change the underlying algorithm to return the
operands that it computes internally rather than transforming the operand list
into the user list internally. This enables the callers of the optimization to
find the operand number related to the uses. This makes working with
instructions with multiple operands much easier since one does not need to mess
around with rederiving the operand number from the user instruction/SILValue
pair.
getRCUsers() works now by running getRCUses() internally and then maps the
operand list to the user list.
rdar://38196046
This bug was introduced by the migration to multi-value SILInstructions.
This fix will be tested by copy forwarding.
WARNING: To handle the potential existence of multi-value
instructions, don't simply iterate over the results. You may be
inadvertently skipping instructions with no results.
Details:
RCIdentityFunctionInfo::getRCUsers searches the def-use chain to find
all users. When visiting a use, it checks the result to determine if
it's casting or extracting the original reference operand. If, so it
continues along the def-use chain. So, it simply wasn't visiting
instructions with no results.
I inverted the logic so that the special case now requires identifying
a SingleValueInstruction, while the default case is conservative.
introduce a common superclass, SILNode.
This is in preparation for allowing instructions to have multiple
results. It is also a somewhat more elegant representation for
instructions that have zero results. Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction. Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.
A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.
Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
Use 'hasAssociatedValues' instead of computing and discarding the
interface type of an enum element decl. This change has specifically not
been made in conditions that use the presence or absence of the
interface type, only conditions that depend on the presence or absence
of associated values in the enum element decl.
Storing this separately is unnecessary since we already
serialize the enum element's interface type. Also, this
eliminates one of the few remaining cases where we serialize
archetypes during AST serialization.
For a long time, we have:
1. Created methods on SILArgument that only work on either function arguments or
block arguments.
2. Created code paths in the compiler that only allow for "function"
SILArguments or "block" SILArguments.
This commit refactors SILArgument into two subclasses, SILPHIArgument and
SILFunctionArgument, separates the function and block APIs onto the subclasses
(leaving the common APIs on SILArgument). It also goes through and changes all
places in the compiler that conditionalize on one of the forms of SILArgument to
just use the relevant subclass. This is made easier by the relevant APIs not
being on SILArgument anymore. If you take a quick look through you will see that
the API now expresses a lot more of its intention.
The reason why I am performing this refactoring now is that SILFunctionArguments
have a ValueOwnershipKind defined by the given function's signature. On the
other hand, SILBlockArguments have a stored ValueOwnershipKind. Rather than
store ValueOwnershipKind in both instances and in the function case have a dead
variable, I decided to just bite the bullet and fix this.
rdar://29671437
This was already done for getSuccessorBlocks() to distinguish getting successor
blocks from getting the full list of SILSuccessors via getSuccessors(). This
commit just makes all of the successor/predecessor code follow that naming
convention.
Some examples:
getSingleSuccessor() => getSingleSuccessorBlock().
isSuccessor() => isSuccessorBlock().
getPreds() => getPredecessorBlocks().
Really, IMO, we should consider renaming SILSuccessor to a more verbose name so
that it is clear that it is more of an internal detail of SILBasicBlock's
implementation rather than something that one should consider as apart of one's
mental model of the IR when one really wants to be thinking about predecessor
and successor blocks. But that is not what this commit is trying to change, it
is just trying to eliminate a bit of technical debt by making the naming
conventions here consistent.
This shaves of ~0.5 seconds from ARC when compiling the stdlib on my machine.
I wired up the cache to the delete notification trigger so we are still memory
safe.
As there are no instructions left which produce multiple result values, this is a NFC regarding the generated SIL and generated code.
Although this commit is large, most changes are straightforward adoptions to the changes in the ValueBase and SILValue classes.
In a bunch of use-cases we use stripSinglePredecessorArgs to eliminate this
case. There is no reason to assume that this is being done in the caller of
RCIdentity. Lets make sure that we handle this case here.
rdar://24156136
(libraries now)
It has been generally agreed that we need to do this reorg, and now
seems like the perfect time. Some major pass reorganization is in the
works.
This does not have to be the final word on the matter. The consensus
among those working on the code is that it's much better than what we
had and a better starting point for future bike shedding.
Note that the previous organization was designed to allow separate
analysis and optimization libraries. It turns out this is an
artificial distinction and not an important goal.