It is a hint to the optimizer that the code, where this builtin is called, is on the fast path.
Specifically, the inliner takes it into account and increases the assumed benefit for code where the builtin is located.
Compared to the fastPath/slowPath builtins, this builtin can be placed into plain linear code and doesn't need to be used in conditions.
Compared to the @inline(__always) attribute, this builtin has also an effect on the caller function. Let's assume
foo() calls bar() contains onFastPath
and both foo and bar are small functions. Then if bar gets inlined into foo, the builtin also increases the chances that foo gets inlined.
This would not be the case if @inline(__always) is used just for bar.
It now detects more opportunities for inlining, like some patters with RC instructions or loads/stores from/to stack locations in the caller.
On the other hand a new shortest path analysis limits inlining to those cases where it really gives a benefit.
As the inlining decision now depends on many parameters, the test-threshhold option is removed because it doe not make much sense anymore.
Instead the inliner test files are modified to model the "real" instruction costs.