This consists of just removing support from OME for ensuring that all uses of a
box go through the project_box that has as its user a mark_uninitialized. Since
the lowering of mark_uninitialized onto the relevant project_box is done by
MarkUninitializedFixup pass, I can just rip out the hacks from the OME!
rdar://31521023
I put in a simple fixup pass (MarkUninitializedFixup) for staging purposes. I
don't expect it to be in tree long. I just did not feel comfortable fixing up in
1 commit all of the passes up to DI.
rdar://31521023
At some point, pass definitions were heavily macro-ized. Pass
descriptive names were added in two places. This is not only redundant
but a source of confusion. You could waste a lot of time grepping for
the wrong string. I removed all the getName() overrides which, at
around 90 passes, was a fairly significant amount of code bloat.
Any pass that we want to be able to invoke by name from a tool
(sil-opt) or pipeline plan *should* have unique type name, enum value,
commend-line string, and name string. I removed a comment about the
various inliner passes that contradicted that.
Side note: We should be consistent with the policy that a pass is
identified by its type. We have a couple passes, LICM and CSE, which
currently violate that convention.
In particular, support the following optimizations:
- owned-to-guaranteed
- dead argument elimination
Argument explosion is disabled for generics at the moment as it usually leads to a slower code.
This ensures that the pass manager runs the eliminator on all functions once
before running any further passes. Otherwise, due to the way the pass manager
runs functions, sometimes a function with unqualified ownership is visible from
a function with qualified ownership. This makes it impossible to have an
invariant that a pass either sees an entire qualified or unqualified world. This
is a useful feature that I would like to keep if I can.
rdar://29870610
if the argument is an array literal.
For example:
arr += [1, 2, 3]
is replaced by:
arr.append(1)
arr.append(2)
arr.append(3)
This gives considerable speedups up to 10x (for our micro-benchmarks which test this).
This is based on the work of @ben-ng, who implemented the first version of this optimization (thanks!).
This is important in case the inline restarts the pass pipeline.
In a sub-sequent invocation of the inlined it should receive a cleaned-up function so that it can make better estimations for further inlining.
As a compensation, reduce the caller-block limit of the inliner.
And add an overall block limit which is also taken into account for always-inline functions.
array.append_element(newElement: Element)
array.append_contentsOf(contentsOf newElements: S)
And allow early inlining of them.
Those functions will be needed to optimize Array.append(contentsOf)
Instead of inserting all alloc_stack/dealloc_stack instructions at the begin/end of the function, insert them at the actual lifetime boundaries.
rdar://problem/16723128
Also, add a third [serializable] state for functions whose bodies we
*can* serialize, but only do so if they're referenced from another
serialized function.
This will be used for bodies synthesized for imported definitions,
such as init(rawValue:), etc, and various thunks, but for now this
change is NFC.
There are now separate functions for function addition and deletion instead of InvalidationKind::Function.
Also, there is a new function for witness/vtable invalidations.
rdar://problem/29311657
Previously it was part of swiftBasic.
The demangler library does not depend on llvm (except some header-only utilities like StringRef). Putting it into its own library makes sure that no llvm stuff will be linked into clients which use the demangler library.
This change also contains other refactoring, like moving demangler code into different files. This makes it easier to remove the old demangler from the runtime library when we switch to the new symbol mangling.
Also in this commit: remove some unused API functions from the demangler Context.
fixes rdar://problem/30503344
This would create control-flow that the unsafeGuaranteed optimization cannot
handle.
unmanaged._withUnsafeGuaranteedRef {
$0.methodCall()
}
rdar://30949999
ASTContext::getSpecializedConformance() already copies the
substitutions, so remove some AllocateCopy() calls.
Also, add a new overload taking a SubstitutionMap instead.
This allows removing some gatherAllSubstitutions() calls,
which have an allocation inside them.
Finally, remove the now-unused ModuleDecl parameter from
ProtocolConformance::subst() and make it public.