Instead of capturing SubstGenericParametersFromMetadata and SubstGenericParametersFromWrittenArgs by value, capture by reference.
This avoids those instances to be copied and thus avoids a lot of mallocs.
SR-10028
rdar://problem/48575729
Note that I've called out a couple of suspicious places where we
are requesting abstract metadata for superclasses but probably
need to be requesting something more complete.
Rename the funnel points for demangling strings/nodes to metadata to
swift_getTypeByMangled(Name|Node) and make them overridable. This will let
us back-deploy mangling improvements and bug fixes.
Clean up the interfaces used to go from a mangled name or demangle tree to
metadata. Parameterize these interfaces for generic parameter substitutions
(already in use) and dependent conformance substitutions (speculative).
The field metadata translation has a great little lambda for extracting
generic arguments from metadata when demangling. Extract it into a
reusable function object.
When SWIFT_ENABLE_MANGLED_NAME_VERIFICATION is set, we would end up
deadlocking when we encounter a metadata cycle. The demangling code only
requires abstract metadata, because at most it needs type identity and
filling in the type arguments of generics. Update clients of
_getTypeByMangledName to assert the kind of metadata they require.
Describe the consequences of missing metadata instead of just posting a scary
message about a bug. Furthermore, since these warnings tend to show up in
playgrounds, and probably aren't relevant to the user of a playground, suppress
them when running in a playground. rdar://problem/44642942
These functions don't accept local variable heap memory, although the names make it sound like they work on anything. When you try, they mistakenly identify such things as ObjC objects, call through to the equivalent objc_* function, and crash confusingly. This adds Object to the name of each one to make it more clear what they accept.
rdar://problem/37285743
This saves us some expensive cross-referencing and caching in the runtime, and lets us reclaim the `isReflectable` bit from the context descriptor flags (since a null field descriptor is a suitable and more accurate indicator of whether a type is reflectable).
If we only emit an opaque reflection record for a struct or class, then we can't reflect its fields. We failed both to clear the "is reflectable" bit in the context descriptor for non-reflectable structs, and to check for the bit before trying to present a struct's fields as children in the runtime. rdar://problem/41274260
We want to be able to potentially introduce new metadata kinds in future Swift compilers, so a runtime ought to be able to degrade gracefully in the face of metadata kinds it doesn't know about. Remove attempts to exhaustively switch over metadata kinds and instead treat unknown metadata kinds as opaque.
Future Swifts may add new metadata kinds, so it isn't appropriate to crash when
we see one. In the case of reflection, we can fall back to opaque behavior.
rdar://34222540
Minimize the generic class metadata template by removing the
class header and base-class members. Add back the set of
information that's really required for instantiation.
Teach swift_allocateGenericClass how to allocate classes without
superclass metadata. Reorder generic initialization to establish
a stronger phase-ordering between allocation (the part that doesn't
really care about the generic arguments) and initialization (the
part that really does care about the generic arguments and therefore
might need to be delayed to handle metadata cycles).
A similar thing needs to happen for resilient class relocation.
Windows does not have `strndup` and `asprintf`. Provide equivalents in
terms of other available APIs. This enables us to build the standard
library for Windows again.
The old-style mirrors were the basis for non-custom, reflection based Mirrors. As part of removing old-style mirrors, reflection based Mirrors are reimplemented without them. Reflection.mm is deleted and replaced with ReflectionMirror.mm, which borrows a chunk of the old code but presents a simpler API to the Swift side. ReflectionMirror.swift then uses that API to implement a reflection-based Mirror init.
rdar://problem/20356017