To distinguish between classes which have the same name (but are in different contexts).
Fixes a miscompile if classes with the same name are used from a different module.
SR-10634
rdar://problem/50538534
Serialize the relationship between a property that has an attached delegate
and its backing variable, so deserialization can reestablish that link.
Fixes rdar://problem/50447022.
Fix a trio of issues involving mangling for opaque result types:
* Symbolic references to opaque type descriptors are not substitutions
* Mangle protocol extension contexts correctly
* Mangle generic arguments for opaque result types of generic functions
The (de-)serialization of generic parameter lists for opaque type
declarations is important for the last bullet, to ensure that the
mangling of generic arguments of opaque result types works across
module boundaries.
Fixes the rest of rdar://problem/50038754.
This is an attribute that gets put on an import in library FooKit to
keep it from being a requirement to import FooKit. It's not checked at
all, meaning that in this form it is up to the author of FooKit to
make sure nothing in its API or ABI depends on the implementation-only
dependency. There's also no debugging support here (debugging FooKit
/should/ import the implementation-only dependency if it's present).
The goal is to get to a point where it /can/ be checked, i.e. FooKit
developers are prevented from writing code that would rely on FooKit's
implementation-only dependency being present when compiling clients of
FooKit. But right now it's not.
rdar://problem/48985979
If a value decl is internal hasTestableOrPrivateImport will succeed (or
fail) without looking at the filename. However this breaks when we query
an internal storage decl with private formal access for a private
setter: the query would fail because no filename was serialized for the
decl (we only serialize filenames for private decls). So in the special
case of a internal storage with private accessor also serialize the
filename.
rdar://48516545
I noticed that I enabled ownership verification on all of the simple run swift
tests, but I didn't on the simple build swift tests. I have prepared a commit
that enables that. This commit contains some test fixes needed to make it pass.
In a previous commit, I banned in the verifier any SILValue from producing
ValueOwnershipKind::Any in preparation for this.
This change arises out of discussions in between John, Andy, and I around
ValueOwnershipKind::Trivial. The specific realization was that this ownership
kind was an unnecessary conflation of the a type system idea (triviality) with
an ownership idea (@any, an ownership kind that is compatible with any other
ownership kind at value merge points and can only create). This caused the
ownership model to have to contort to handle the non-payloaded or trivial cases
of non-trivial enums. This is unnecessary if we just eliminate the any case and
in the verifier separately verify that trivial => @any (notice that we do not
verify that @any => trivial).
NOTE: This is technically an NFC intended change since I am just replacing
Trivial with Any. That is why if you look at the tests you will see that I
actually did not need to update anything except removing some @trivial ownership
since @any ownership is represented without writing @any in the parsed sil.
rdar://46294760
Otherwise, we can't represent a cross-reference to generic parameters
in a parent type /when used in an extension/.
https://bugs.swift.org/browse/SR-9084
Previously, the fast path for nested types only worked when the nested
type was defined in a Swift module or a Clang module without an
overlay; this is because it was originally designed to fix circularity
issues when merging partial modules for a single target. By having a
Swift overlay module pass through requests for nested types to the
underlying Clang module, we get the fast-path behavior in more cases.
(The one case where it /won't/ kick in is if the overlay has a nested
type that shadows a nested type from the Clang module, but that's
probably pretty rare!)
Generic environments and archetypes can be expensive to deserialize
if they involve a generic signature not seen before.
Also, canonicalize the witness substitutions to eliminate type
aliases, and map them to interface types, which again are cheaper
to deserialize.
Actually, the biggest win here seems to be not recording parameters,
which were taking up a ridiculous amount of space in the generated
swiftdoc. This change takes Swift.swiftdoc from 5MB to 3.5MB.
This is how we originally controlled whether or not we printed out ownership
annotations when we printed SIL. Since then, I have changed (a few months ago I
believe) the ownership model eliminator to know how to eliminate these
annotations from the SIL itself. So this hack can be removed.
As an additional benefit, this will let me rename -enable-sil-ownership to
-enable-sil-ownership-verifier. This will I hope eliminate confusion around this
option in the short term while I am preparing to work on semantic sil again.
rdar://42509812
Validation of the input side of FunctionTypeRepr was previously being done in Sema because of expression folding. If we instead push the invariant that the input TypeRepr should always be a TupleTypeRepr into the AST a number of nice cleanups fall out:
- The SIL Parser no longer accepts Swift 2-style type declarations
- Parse is more cleanly able to reject invalid FunctionTypeReprs
- Clients of the AST can be assured the input type is always a TupleType so we can flush Swift 2 hacks
Ideally `UnboundGenericType` should never be serialized but it is
currently allowed to make generic `typealias` declarations without
specifying generic parameters, so it should be allowed to cross
reference typealias decls in such types as well because `NameAliasType`
can't be used until generic parameters are resolved.
This is only a temporary fix and more comprehensive solution is still
pending here, most likely such declarations should not produce
`UnboundGenericType` but instead should copy generic parameters from
underlying type and produce proper `NameAliasType`.
Resolves: rdar://problem/37384120
This flag supports promoting KeyPath access violations to an error in
Swift 4+, while building the standard library in Swift 3 mode. This is
only necessary as long as the standard library continues to build in
Swift 3 mode. Once the standard library build migrates, it can all be
ripped out.
<rdar://problem/40115738> [Exclusivity] Enforce Keypath access as an error, not a warning in 4.2.
This is unfortunate in that it makes the linker do extra work, but in
practice it probably doesn't matter much, and meanwhile it handles all
our problems with @inlinable.
Alternate solution to rdar://problem/39338239
This reverts commit bb16ee049d,
reversing changes made to a8d831f5f5.
It's not sufficient to solve the problem, and the choices were to do
something more complicated, or just take a simple brute force
approach. We're going with the latter.
This reverts commit ee6e190e09. It's not
sufficient to solve the problem, and the choices were to do something
more complicated, or just take a simple brute force approach. We're
going with the latter.
LinkNormal mode is used by the mandatory pipeline. It only needs
to deserialize what is necessary for code generation, that is
functions with shared linkage that must be emitted into the client.
It was only used in a few tests. Those tests now use -emit-sil instead
of -emit-silgen, with some functions marked @_transparent and a few
CHECK: lines changed now that the mandatory optimizations get to run.
Continue to emit notes for the candidates, but use different text.
Note that we can emit a typo correction fix-it even if there are
multiple candidates with the same name.
Also, disable typo correction in the migrator, since the operation
is quite expensive, the notes are never presented to the user, and
the fix-its can interfere with the migrator's own edits.
Our general guidance is that fix-its should be added on the main
diagnostic only when the fix-it is highly likely to be correct.
The exact threshold is debateable. Typo correction is certainly
capable of making mistakes, but most of its edits are right, and
when it's wrong it's usually obviously wrong. On balance, I think
this is the right thing to do. For what it's worth, it's also
what we do in Clang.
Add serialization layouts for rare instructions that take extra attributes. We
can continue adding bits to these layout without affecting the layout of the
vast majority of instructions.
Introduce a new Type node, BoundNameAliasType, which describes a
reference to a typealias that requires substitutions to produce the
underlying type. This new type node is used both for references to
generic typealiases and for references to (non-generic) typealiases
that occur within generic contexts, e.g., Array<Int>.Element.
At present, the new type node is mainly useful in preserving type
sugar for diagnostics purposes, as well as being reflected in other
tools (indexing, code completion, etc.). The intent is to completely
replace NameAliasType in the future.