Detect and diagnose a contextual mismatch between expected
collection element type and the one provided (e.g. source
of the assignment or argument to a call) e.g.:
```swift
let _: [Int] = ["hello"]
func foo(_: [Int]) {}
foo(["hello"])
```
We don't require or allow '&' for the mutable parameters in
operator calls, since we want to write 'x += 10' and not
'&x += 10'.
The constraint sovler accepted '&x += 10' though, and we had
a separate pass in MiscDiagnostics for rejecting it.
Instead, let's just reject this in the solver.
The main difficulty is that we must now be prepared to fail
certain OperatorArgumentConversion and ApplicableFunction
constraints even when both the LHS and RHS types are equal.
Enhance call-argument matching to reject trailing closures that match up
with parameters that cannot accept closures at all.
Fixes rdar://problem/50362170.
Detect situations where key path doesn't have capability required
by the context e.g. read-only vs. writable, or either root or value
types are incorrect e.g.
```swift
struct S { let foo: Int }
let _: WritableKeyPath<S, Int> = \.foo
```
Here context requires a writable key path but `foo` property is
read-only.
Currently `getPotentialBindingsForRelationalConstraint` doesn't
respect the fact that type of key path expression has to be a
form of `KeyPath`, instead it could eagerly try to bind it to
`Any` or other contextual type if it's only available
information.
This patch aims to fix this situation by filtering potential
bindings available for type variable representing type of
the key path expression.
Resolves: SR-10467
Since there is a way to mutate through use of writable keypath
diagnostics have to be adjusted to point to the members found
via keypath member lookup instead to using catch-all
"immutable base" diagnostic.
This PR migrates instance member on type and type member on instance diagnostics handling to use the new diagnostics framework (fixes) and create more reliable and accurate diagnostics in such scenarios.
Using an anonymous union in KeyPathPatternComponent instead of the weird void * in SetterAndIdKind
Added TupleElement kind to KeyPathComponentKindEncoding
Written basic SIL keypath serialization tests
Deleted or edited some old Swift-level tuple key path tests
For context, String, Nil, and Bool already behave this way.
Note: Before it used to construct (call, ... (integer_literal)), and the
call would be made explicit / implicit based on if you did eg: Int(3) or
just 3. This however did not translate to the new world so this PR adds
a IsExplicitConversion bit to NumberLiteralExpr. Some side results of
all this are that some warnings changed a little and some instructions are
emitted in a different order.
Extend existing `RequirementFailure` functionality to support
conditional requirement failures. Such fixes are introduced
only if the parent type requirement has been matched successfully.
Resolves: rdar://problem/47871590
- Attempting to construct class object using metatype value via
non-required initializer
- Referencing initializer of protocol metatype base
Both of the diagnostics are used by `AllowInvalidInitRef` fix.
This fixes the last couple of instances of the interpreter not being
passed to the python the scripts which makes them fail on OSes where
shebangs are not honoured (i.e. Windows)
* Make sure that base and unwrapped types aren't null
* Don't allocate `ForceOptional` fix if nothing has been unwrapped
in `simplifyApplicableFnConstraint`
* Add sugar reconstitution support to `FailureDiagnostic::resolveType`
* Format diagnostics a bit better
When the compiler fails to find an overload with suitable parameter or return types, it often attaches a note listing the available overloads so that users can find the one they meant to use. The overloads are currently ordered in a way that depends on the order they were declared, so swift-evolve would sometimes cause tests involving these diagnostics to fail.
This change emits the list in a textually-sorted order instead. The names were already being sorted as they were inserted into a std::set, so this shouldn’t significantly slow down the diagnostic.
This allows us to skip attempting actual conversions.
This speeds up one of our slow test cases, and perturbs the output of
another test. In the latter case, we stop emitting conversions as part
of the non-semantic piece of the array_expr. The fact that we're not
putting conversions in on that path is something I've seen before in
other instances. I'll open a bug if I cannot find one for it, although
I believe it's entirely cosmetic in this case since we don't rely on
the conversion being there.