Enhance call-argument matching to reject trailing closures that match up
with parameters that cannot accept closures at all.
Fixes rdar://problem/50362170.
Let's keep track of type mismatch between type deduced
for the body of the closure vs. what is requested
contextually, it makes it much easier to diagnose
problems like:
```swift
func foo(_: () -> Int) {}
foo { "hello" }
```
Because we can pin-point problematic area of the source
when the rest of the system is consistent.
Resolves: rdar://problem/40537960
We previously allowed these closures to default to (), but be inferred
as other types as well, which means that we will find some expressions
to be ambiguous because we end up finding multiple viable solutions
where there is really only one reasonable solution.
Fixes: rdar://problem/42337247
This fixes a subtle issue where, during single-expression closure type inference, we would ask for the settability of local variables from the outer function's context, leading us to mistakenly consider them mutable inside single-expression closure contexts. DI would catch some but not all violations of the expected semantics here.
Currently we always use 'FunctionResult' as a path element when matching
function result types, but closure result type is allowed to be implicitly
converted to Void, which means we need to be careful when to use
'FunctionResult' and 'ClosureResult'.
Resolves: rdar://problem/37790062
Calls involving single trailing closure arguments require special
handling because we don't have as much contextual information
about function/argument types as in with regular calls, which means
that diagnosing such situations only by `visitApplyExpr`
yields subpar results.
Resolves: SR-4836.
```swift
func foo(f: Void) -> ()) {}
```
This compiler currently suggests we change this to:
```swift
func foo(f: (Void) -> ()) {}
```
That's `(()) -> ()`, almost certainly not what someone wants in Swift
4. We should suggest changing that to:
```swift
func foo(f: () -> ()) {}
```
Additionally,
```swift
func foo(f: (Void) -> ()) {}
```
Should trigger a warning that the `(Void)` input type is `(())`, and you
can't supply `()` to it in Swift 4, and suggest a fix-it change it to:
```swift
func foo(f: () -> ()) {}
```
rdar://problem/32143617
(in Swift 4 mode)
There are a lot of other things that overload ranking does *not* take
into account, and I intend to file a more general bug about that, but
this should resolve some of the most egregious ambiguities with Swift
3's import rules (SE-0005, particularly "omit needless words" and
adding default arguments).
Finishes rdar://problem/25607552.
The "map into the right context" logic was only getting hit
if we didn't exit early to handle the lvalue case. Move it up
to the top of the function.
Fixes <https://bugs.swift.org/browse/SR-4369>.
rdar://problem/21193574 says that this warning dates back to when closure args before default args used to be considered as trailing closures. This is not the case anymore so Jordan suggested we remove the warning.
`1 { }` was parsed as a call expression with a trailing closure. This made the diagnostics for `var x = 1 { get { ... } }` extremely bad. Resolves SR-3671.
This still doesn't work in a number of cases, but fixes a case
that used to work in Swift 3.0 which was affecting the Dollar.swift
library.
Fixes <rdar://problem/29007725>.
Fixes SR-2757.
Variables in capture lists are treated as 'let' constants, which can
result in misleading, incorrect diagnostics. Mark them as such in order
to produce better diagnostics, by adding an extra parameter to the
VarDecl initializer.
Alternatively, these variables could be marked as implicit, but that
results in other diagnostic problems: capture list variables that are
never used produce warnings, but these warnings aren't normally emitted for
implicit variables. Other assertions in the compiler also misfire when
these variables are treated as implicit.
Another alternative would be to walk up the AST and determine whether
the `VarDecl`, but there doesn't appear to be a way to do so.
This reverts commit e172383e2f.
There were two problems with this commit:
- This was a source-breaking change and should have been feature-gated.
- It only addressed one narrow case of SE-0110.
Fixes <rdar://problem/28621719>.
Previously, getInterfaceType() would return getType() if no
interface type was set. Instead, always set an interface type
explicitly.
Eventually we want to remove getType() altogether, and this
brings us one step closer to this goal.
Note that ParamDecls are excempt from this treatment, because
they don't have a proper interface type yet. Cleaning this up
requires more effort.
Previously, getInterfaceType() would return getType() if no
interface type was set. Instead, always set an interface type
explicitly.
Eventually we want to remove getType() altogether, and this
brings us one step closer to this goal.
Note that ParamDecls are excempt from this treatment, because
they don't have a proper interface type yet. Cleaning this up
requires more effort.
This fixes a usability regression with the removal of @noreturn
in Swift 3. Previously, it was legal to write this:
let callback: () -> Int = { fatalError() }
Now that the special @noreturn attribute has been replaced with
a Never type, the above fails to typecheck, because the expression
now has type 'Never', and we expect a value of type 'Int'.
Getting around this behavior requires ugly workarounds to force the
parser to treat the body as a statement rather than an expression;
for example,
let callback: () -> Int = { _ = (); fatalError() }
This patch generalized single-expression closures to allow
the 'Never to T' conversion. Note that this is rather narrow
in scope -- it only applies to closure *literals*, single-expression
ones at that, not arbitrary function *values*.
In fact, it is not really a conversion at all, but more of a
desugaring rule for single-expression closures. They can now be
summarized as follows:
- If the closure literal has contextual return type T and
the expression has Never type, the closure desugars as
{ _ = <expr> }, with no ReturnStmt.
- If the closure literal has contextual return type T for some
non-void type T, the closure desugars as { return <expr> };
the expression type must be convertible to T.
- If the closure literal has contextual return type Void, and
the expression has some non-Void type T, the closure
desugars as { _ = <expr>; return () }.
Fixes <rdar://problem/28269358> and <https://bugs.swift.org/browse/SR-2661>.
(by making it a normal argument with a label and not a trailing
closure)
Diagnostic part of rdar://problem/25607552. A later commit will keep
us from getting in this situation quite so much when default arguments
are involved.
This commit built upon the work of Pull Request 3895. Apart from the
work to make the following work
```swift
let f: (Int, Int) -> Void = { x in } // this is now an error
```
This patch also implement the part 2 mentioned in the #3895
```swift
let g: ((Int, Int)) -> Void = { y in } // y should have type (Int, Int)
```
Implements part of SE-0110. Single argument in closures will not be accepted if
there exists explicit type with a number of arguments that's not 1.
```swift
let f: (Int, Int) -> Void = { x in } // this is now an error
```
Note there's a second part of SE-0110 which could be considered additive,
which says one must add an extra pair of parens to specify a single arugment
type that is a tuple:
```swift
let g ((Int, Int)) -> Void = { y in } // y should have type (Int, Int)
```
This patch does not implement that part.
almost always the case that the user didn't know what the rules are between
single expression and multistatement closures, and they often don't know how to
fix the problem.
Address this by doing some heroics when we detect this situation. We now go dive
into the closure body, type check the explicit returns within it, and can usually
divine the right answer. When we do that, generate a fixit hint that generates a
modification to the existing signature, or synthesizes the entire signature from
scratch. This addresses:
<rdar://problem/22123191> QoI: multi-line closure with failure to infer result type should add a fixit
We previously produced the unhelpful error message:
x.swift:11:7: error: type of expression is ambiguous without more context
we now produce:
error: unable to infer closure return type in current context
which is going in the right direction.
This flips the switch to have @noescape be the default semantics for
function types in argument positions, for everything except property
setters. Property setters are naturally escaping, so they keep their
escaping-by-default behavior.
Adds contentual printing, and updates the test cases.
There is some further (non-source-breaking) work to be done for
SE-0103:
- We need the withoutActuallyEscaping function
- Improve diagnostics and QoI to at least @noescape's standards
- Deprecate / drop @noescape, right now we allow it
- Update internal code completion printing to be contextual
- Add more tests to explore tricky corner cases
- Small regressions in fixits in attr/attr_availability.swift
Fix-it suggests normal argument expression, instead of of enclosing whole
expression with parens.
* Moved diagnostic logic to Sema, because we have to add correct argument
label for the closure.
if arr.starts(with: IDs) { $0.id == $2 } { ... }
~~^
, isEquivalent: )
* We now accept trailing closures for each expressions and right before `where`
clause, as well as closures right before the body.
if let _ = maybeInt { 1 }, someOtherCondition { ... }
~^
( )
for let x in arr.map { $0 * 4 } where x != 0 { ... }
~^
( )
* [Fixit] Add a fixit for converting non-trailing closures to trailing closures.
* [test] Update test to reflect the added note about converting to trailing closures.
along with recent policy changes:
- For expression types that are not specifically handled, make sure to
produce a general "unused value" warning, catching a bunch of unused
values in the testsuite.
- For unused operator results, diagnose them as uses of the operator
instead of "calls".
- For calls, mutter the type of the result for greater specificity.
- For initializers, mutter the type of the initialized value.
- Look through OpenExistentialExpr's so we can handle protocol member
references propertly.
- Look through several other expressions so we handle @discardableResult
better.
as a failure to convert the individual operand, since the operator
is likely conceptually generic in some way and the choice of any
specific overload is probably arbitrary.
Since we now fall back to a better-informed diagnostics point, take
advantage of this to generate a specialized diagnostic when trying to
compare values of function type with ===.
Fixes rdar://25666129.
This reverts commit 073f427942,
i.e. it reapplies 35ba809fd0 with a
test fix to expect an extra note in one place.
as a failure to convert the individual operand, since the operator
is likely conceptually generic in some way and the choice of any
specific overload is probably arbitrary.
Since we now fall back to a better-informed diagnostics point, take
advantage of this to generate a specialized diagnostic when trying to
compare values of function type with ===.
Fixes rdar://25666129.