Segments list in interpolated string literal accepts two syntax kinds as
elements: StringSegment and ExpressionSegment. This patch generates
factory methods to reject other kinds.
A string interpolation expression is composed of { OpenQuote, Segments,
CloseQuote }. To represent OpenQuote, CloseQuote and StringSegment, we have to
introduce new token kinds correspondingly.
This patch adds a python function to syntax node gyb support called
"check_child_condition". Given a child's definition, this function
generate a C++ closure to check whether a given syntax node can satisfy
the condition of the child node. This function recursively generates code
for node choices too, therefore we don't need to hard code the
condition checking for node choices.
Some structures of syntax nodes can have children choices, e.g. a
dictionary expression can either contain a single ':' token or a list of
key-value pairs.
This patch gives the existing code generation infrastructure a way to
specify such node choices. Node choices are specified under a child
declaration with two constraints: a choice cannot be declared as
optional, and a choice cannot have further recursive choices.
Since we don't have too many node structures with choices, part of the
SyntaxFactory code for these nodes is manually typed.
This patch also teaches AccessorBlock to use node choices.
Patterns those are parsed as ExpressionPattern at first, then resolved
to actual patterns:
* OptionalPattern -> pattern '?'
* AsTypePattern -> pattern 'as' type
* EnumCasePattern -> type? '.' identifier tuple-pattern
Variable declarations are declarations led by either 'var' or 'let'. It
can contain multiple pattern bindings as children.
For patterns, this patch only creates syntax nodes for simple identifier
patterns, e.g. 'a = 3'. The rest of the pattern kinds are still left
unknown (UnknownPattern).
This patch also refactors the structure of function signature node so
that closure signature can re-use parts of function signature. For
instance, we group arrow and return type to be "ReturnClause". And we
group parenthesized parameter list to be "ParamClause".
This structure of closure signature also calls for a good way to
represent either-or node in libSyntax APIs, since we've two ways to
specify parameters in closure: one is as regular function parameter and
the other is dot-separated simple names.