If the memory location depends on something, insert a dependency for the loaded value:
```
%2 = mark_dependence %1 on %0
%3 = load %2
```
->
```
%2 = mark_dependence %1 on %0 // not needed anymore, can be removed eventually
%3 = load %2
%4 = mark_dependence %3 on %0
// replace %3 with %4
```
Memory effects of begin_access are only defined to prevent the optimizer moving loads and stores across a begin_access.
But those memory effects are not relevant for RedundantLoadElimination
Scope-ending instructions, like `end_borrow` are only irrelevant for RLE if the preceding load is not changed.
If it is changed from `load [copy]` -> `load [take]` the memory effects of those scope-ending instructions prevent that the `load [take]` will illegally mutate memory which is protected from mutation by the scope.
Fixes a memory verifier crash
rdar://139824805
As the optimizer uses more and more AST stuff, it's now time to create an "AST" module.
Initially it defines following AST datastructures:
* declarations: `Decl` + derived classes
* `Conformance`
* `SubstitutionMap`
* `Type` and `CanonicalType`
Some of those were already defined in the SIL module and are now moved to the AST module.
This change also cleans up a few things:
* proper definition of `NominalTypeDecl`-related APIs in `SIL.Type`
* rename `ProtocolConformance` to `Conformance`
* use `AST.Type`/`AST.CanonicalType` instead of `BridgedASTType` in SIL and the Optimizer
For years, optimizer engineers have been hitting a common bug caused by passes
assuming all SILValues have a parent function only to be surprised by SILUndef.
Generally we see SILUndef not that often so we see this come up later in
testing. This patch eliminates that problem by making SILUndef uniqued at the
function level instead of the module level. This ensures that it makes sense for
SILUndef to have a parent function, eliminating this possibility since we can
define an API to get its parent function.
rdar://123484595
The new implementation has several benefits compared to the old C++ implementation:
* It is significantly simpler. It optimizes each load separately instead of all at once with bit-field based dataflow.
* It's using alias analysis more accurately which enables more loads to be optimized
* It avoids inserting additional copies in OSSA
The algorithm is a data flow analysis which starts at the original load and searches for preceding stores or loads by following the control flow in backward direction.
The preceding stores and loads provide the "available values" with which the original load can be replaced.