Intro the service `diagnoseAndConsumeError` as the ultimate site to drop
deserialization issues we can recover from. It will be used to raise
diagnostics on the issues before dropping them silently.
Move some deserialization error handling services to methods under ModuleFile.
This will give access to the ASTContext and allow to report diagnostics.
Also rename `consumeErrorIfXRefNonLoadedModule` into the more general
`consumeExpectedError` that is more appropriate for future improvements.
The Swift compiler expects the context to remain stable between when a
module is built and loaded by a client. Usually the build system would
rebuild a module if a dependency changes, or the compiler would rebuilt
the module from a swiftinterface on a context change. However, such
changes are not always detected and in that case the compiler may crash
on an inconsistency in the context. We often see this when a clang
module is poorly modularized, the headers are modified in the SDK, or
some clang define change its API.
These are project issues that used to make the compiler crash, it
provided a poor experience and doesn't encourage the developer to fix
them by themselves. Instead, let's keep track of modularization issues
encountered during deserialization and report them as proper errors when
they trigger a fatal failure preventing compilation.
If we have both loaded a swiftdoc, and the decl we
have should have had its doc comment serialized into
it, we can check it without needing to fall back
to the swiftsourceinfo.
This requires a couple of refactorings:
- Factoring out the `shouldIncludeDecl` logic
into `getDocCommentSerializationTargetFor` for
determining whether a doc comment should end up
in the swiftdoc or not.
- Factoring out `CommentProviderFinder` for searching
for the doc providing comment decl for brief
comments, in order to allow us to avoid querying
the raw comment when searching for it. This has the
added bonus of meaning we no longer need to fall
back to parsing the raw comment for the brief
comment if the comment is provided by another decl
in the swiftdoc.
This diff is best viewed without whitespace.
Add a private discriminator to the mangling of an outermost-private `MacroExpansionDecl` so that declaration macros in different files won't have colliding macro expansion buffer names.
rdar://107462515
A @testable import allows a client to call internal decls which may
refer to non-public dependencies. To support such a use case, load
non-public transitive dependencies of a module when it's imported
@testable from the main module.
This replaces the previous behavior where we loaded those dependencies
for any modules built for testing. This was risky as we would load more
module for any debug build, opening the door to a different behavior
between debug and release builds. In contrast, applying this logic to
@testable clients will only change the behavior of test targets.
rdar://107329303
Differentiate `internal` and `fileprivate` imports from
implementation-only imports at the module-wide level to offer a
different module loading strategy. The main difference is for non-public
imports from a module with testing enabled to be loaded by transitive
clients.
Ideally, we would only load transitive non-public dependencies on
testable imports of the middle module. The current module loading logic
doesn't allow for this behavior easily as a module may be first loaded
for a normal import and extra dependencies would have to be loaded on
later imports. We may want to refactor the module loading logic to allow
this if needed.
rdar://106514965
When loading a swiftmodule A, read its package information to tell if
the current client should load A's dependencies imports by a package
import. Only clients belonging to the same package as A should load
those dependencies, clients outside of the package likely don't have
access to those dependencies.
This is specific to swiftmodules as swiftinterfaces never display a
package-only import. Clients are unaware of package dependencies when
building against a swiftinterface.
rdar://106164813
If a module was first read using the adjacent swiftmodule and then
reloaded using the swiftinterface, we would do an up to date check on
the adjacent module but write out the unit using the swiftinterface.
This would cause the same modules to be indexed repeatedly for the first
invocation using a new SDK. On the next run we would instead raad the
swiftmodule from the cache and thus the out of date check would match
up.
The impact of this varies depending on the size of the module graph in
the initial compilation and the number of jobs started at the same time.
Each SDK dependency is re-indexed *and* reloaded, which is a drain on
both CPU and memory. Thus, if many jobs are initially started and
they're all going down this path, it can cause the system to run out of
memory very quickly.
Resolves rdar://103119964.
Introduce a new flag `-export-as` to specify a name used to identify the
target module in swiftinterfaces. This provides an analoguous feature
for Swift module as Clang's `export_as` feature.
In practice it should be used when a lower level module `MyKitCore` is
desired to be shown publicly as a downstream module `MyKit`. This should
be used in conjunction with `@_exported import MyKitCore` from `MyKit`
that allows clients to refer to all services as being part of `MyKit`,
while the new `-export-as MyKit` from `MyKitCore` will ensure that the
clients swiftinterfaces also use the `MyKit` name for all services.
In the current implementation, the export-as name is used in the
module's clients and not in the declarer's swiftinterface (e.g.
`MyKitCore`'s swiftinterface still uses the `MyKitCore` module name).
This way the module swiftinterface can be verified. In the future, we
may want a similar behavior for other modules in between `MyKitCore` and
`MyKit` as verifying a swiftinterface referencing `MyKit` without it
being imported would fail.
rdar://103888618
Currently, ModuleFileSharedCore::fatal() calls abort(), which may be reasonable
in a swift-frontend invocation, but has dire consequences when the Swift
frontend is embedded into another process, for example, LLDB where the abort()
kills the entire debugging session.
This patch introduces a few alternatives to the ModuleFile::fatal() familiy of
functions that instead push a fatal diagnostic to the ASTContext's
DiagnosticsEngine and return an llvm::Error so the error can be roperly
communicated and the ASTContext can be wound down without killing the parent
process.
The transition is not complete, this patch does not yet handle
fatalIfUnexpected(), for example.
This patch is NFC for the Swift compiler: When DebuggerSupport in off
ModuleFile::diagnoseFatal() will still call abort(), but if it is on, the error
will be passed up, together with a pretty stack trace.
rdar://64511878
`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022
The ObjCMethodLookupTable for protocols was not being serialized and rebuilt on load, so NominalTypeDecl::lookupDirect() on selectors was not working correctly for deserialized types. Correct this oversight.
This class is a perennial source of bugs when we add new type nodes because there is no signal when you forget to update it since it's just comparing record IDs in the switch. Break this class down and add new macros that enforce structural checks and require exhaustiveness at compile time.
This TYPE_LAYOUT(...) macro replaces the usual \c BCRecordLayout coding structure by enforcing structural checks for the definition of deserialization members. If you forget to define a TYPE_LAYOUT(...) for a TYPE(...) there will be a gnarly SFINAE error pointing at it in DeclTypeRecordNodes.def.
This macro pairs with \c DESERIALIZE_TYPE(...) in Deserialization.cpp such that if you forget \c DESERIALIZE_TYPE(...) you will come up with a linker error.
We now schedule conformance emissions in basically the same way
we do for types and declarations, which means that we'll emit them
uniquely in the module file instead of redundantly at every use.
This should produce substantially smaller module files overall,
especially for modules that heavily use generics. It also means
that we can remove all the unfortunate code to support using
different abbrev codes for them in different bitcode blocks.
Requirement lists are now emitted inline in the records that need
them instead of as trailing records. I think this will improve
space usage, but mostly it assists in eliminating the problem
where abbrev codes are shared between blocks.
Clang importer diagnostics that are produced as a result of a reference
in Swift code are attached to as notes to the Sema produced diagnostic
that indicates the declaration is unavailable.
Ex: Notes about why a C function import failed are attached to
the error explaining that the symbol could not be found in scope.
This patch introduces new diagnostics to the ClangImporter to help
explain why certain C, Objective-C or C++ declarations fail to import
into Swift. This patch includes new diagnostics for the following entities:
- C functions
- C struct fields
- Macros
- Objective-C properties
- Objective-C methods
In particular, notes are attached to indicate when any of the above
entities fail to import as a result of refering an incomplete (only
forward declared) type.
The new diangostics are hidden behind two new flags, -enable-experimental-clang-importer-diagnostics
and -enable-experimental-eager-clang-module-diagnostics. The first flag emits diagnostics lazily,
while the second eagerly imports all declarations visible from loaded Clang modules. The first
flag is intended for day to day swiftc use, the second for module linting or debugging the importer.
We noticed some Swift clients rely on the serialized search paths in the module to
find dependencies and droping these paths altogether can lead to build failures like
rdar://85840921.
This change teaches the serialization to obfuscate the search paths and the deserialization
to recover them. This allows clients to keep accessing these paths without exposing
them when shipping the module to other users.
We've recently added the -experimental-hermetic-seal-at-link compiler flag,
which turns on aggressive dead-stripping optimizations and assumes that library
code can be optimized against client code because all users of the library
code/types are present at link/LTO time. This means that any module that's
built with -experimental-hermetic-seal-at-link requires all clients of this
module to also use -experimental-hermetic-seal-at-link. This PR enforces that
by storing a bit in the serialized module, and checking the bit when importing
modules.
The old message `(see "While..." info below)` is misleading ever since
we moved the serialization failure information to the stacktrace as the
context appears before this error. Plus this message should only be
shown for low-level errors when the data read is unexpected, so in cases
of a corrupted swiftmodule file or when there's a collision between two
different serialization formats. Let's make it more clear and direct.
Rework Sendable checking to be completely based on "missing"
conformances, so that we can individually diagnose missing Sendable
conformances based on both the module in which the conformance check
happened as well as where the type was declared. The basic rules here
are to only diagnose if either the module where the non-Sendable type
was declared or the module where it was checked was compiled with a
mode that consistently diagnoses `Sendable`, either by virtue of
being Swift 6 or because `-warn-concurrency` was provided on the
command line. And have that diagnostic be an error in Swift 6 or
warning in Swift 5.x.
There is much tuning to be done here.