If a module has the same `public-module-name` as the module being
generated and its import is exported, merge it into the same generated
interface.
Fix various always-imported modules from being printed while here and
update all the tests that checked for them.
Resolves rdar://137887712.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
Cursor info for a constructor would previously give the cursor info for
the containing type only. It now also adds cursor info for the
constructor itself in a "secondary_symbols" field.
Refactor `passCursorInfoForDecl` to use a single allocator rather than
keeping track of positions in a buffer and assigning everything at the
end of the function.
Refactor the various available refactoring gathering functions to take a
SmallVectorImpl and to not copy strings where they don't need to.
Resolves rdar://75385556
Out handling of clang submodules was handled differently between DocInfo and
InterfaceGen. For InterfaceGen submodules were mapped back to their top-level
clang modules (or their Swift overlay if it had one) before being passed
into printSubmoduleInterface, along with the dot separated name of the submodule.
For DocInfo, they were not, and only the rightmost component of their name was
passed. The call to retrieve the decls from a ModuleDecl doesn't work if the
ModuleDecl wraps a clang submodule, so we were missing these decls.
InterfaceGen for submodules also shouldn't have been mapping the module back to
the overlay of top-level clang module, as that meant we ended up printing
import decls from the Swift overlay in the submodule's interface.
Resolves rdar://problem/57338105
The typedef `swift::Module` was a temporary solution that allowed
`swift::Module` to be renamed to `swift::ModuleDecl` without requiring
every single callsite to be modified.
Modify all the callsites, and get rid of the typedef.
This patch allows SourceKit to generate the interface for a given type specified by its mangled name.
Type interface is refined decl printing with type parameters localized and unusable members hidden.
Required field:
"key.request": "source.request.editor.open.interface.swifttype"
"key.usr": the mangled name of the given type.
For a concrete type, members from its conforming protocols' extensions can be hard
to manually surface. In this commit, when printing Swift modules, we start to replicate these
extensions and synthesize them as if they are the concrete type's native extensions.
Credit to Doug for suggesting this practice.
Modules occupy a weird space in the AST now: they can be treated like
types (Swift.Int), which is captured by ModuleType. They can be
treated like values for disambiguation (Swift.print), which is
captured by ModuleExpr. And we jump through hoops in various places to
store "either a module or a decl".
Start cleaning this up by transforming Module into ModuleDecl, a
TypeDecl that's implicitly created to describe a module. Subsequent
changes will start folding away the special cases (ModuleExpr ->
DeclRefExpr, name lookup results stop having a separate Module case,
etc.).
Note that the Module -> ModuleDecl typedef is there to limit the
changes needed. Much of this patch is actually dealing with the fact
that Module used to have Ctx and Name public members that now need to
be accessed via getASTContext() and getName(), respectively.
Swift SVN r28284
This translates clang arguments to swift ones, uses the bridging header
functionality to parse the provided file, and re-uses part of the module interface
printing implementation to print an interface for the header.
Part of rdar://19939192
Swift SVN r28062
Brings back the behavior removed in r15800 under a pair of flags
(-module-print-submodules and -module-print-hidden) that control
whether to print submodules, possibly including submodules that aren't
explicitly visible.
Swift SVN r15872