```
@_specialize(exported: true, spi: SPIGroupName, where T == Int)
public func myFunc() { }
```
The specialized entry point is only visible for modules that import
using `_spi(SPIGroupName) import ModuleDefiningMyFunc `.
rdar://64993425
This attribute allows to define a pre-specialized entry point of a
generic function in a library.
The following definition provides a pre-specialized entry point for
`genericFunc(_:)` for the parameter type `Int` that clients of the
library can call.
```
@_specialize(exported: true, where T == Int)
public func genericFunc<T>(_ t: T) { ... }
```
Pre-specializations of internal `@inlinable` functions are allowed.
```
@usableFromInline
internal struct GenericThing<T> {
@_specialize(exported: true, where T == Int)
@inlinable
internal func genericMethod(_ t: T) {
}
}
```
There is syntax to pre-specialize a method from a different module.
```
import ModuleDefiningGenericFunc
@_specialize(exported: true, target: genericFunc(_:), where T == Double)
func prespecialize_genericFunc(_ t: T) { fatalError("dont call") }
```
Specially marked extensions allow for pre-specialization of internal
methods accross module boundries (respecting `@inlinable` and
`@usableFromInline`).
```
import ModuleDefiningGenericThing
public struct Something {}
@_specializeExtension
extension GenericThing {
@_specialize(exported: true, target: genericMethod(_:), where T == Something)
func prespecialize_genericMethod(_ t: T) { fatalError("dont call") }
}
```
rdar://64993425
To help consolidate our various types describing imports, this commit moves the following types and methods to Import.h:
* ImplicitImports
* ImplicitStdlibKind
* ImplicitImportInfo
* ModuleDecl::ImportedModule
* ModuleDecl::OrderImportedModules (as ImportedModule::Order)
* ModuleDecl::removeDuplicateImports() (as ImportedModule::removeDuplicates())
* SourceFile::ImportFlags
* SourceFile::ImportOptions
* SourceFile::ImportedModuleDesc
This commit is large and intentionally kept mechanical—nothing interesting to see here.
llvm-bcanalyzer does *not* like it when there are multiple block info metadata blocks in the same bitstream file. This patch will skip the emission of that and just jump straight to the metadata block when we're not reading a "standalone" incremental dependency file. While I'm here, also add the right block abbreviation info so we can get a decent dump from llvm-bcanalyzer
Take advantage of the binary swiftdeps serialization utliities built during #32131. Add a new optional information block to swiftdeps files. For now, don't actually serialize swiftdeps information.
Frontends will use this information to determine whether to write incremental dependencies across modules into their swiftdeps files. We will then teach the driver to deserialize the data from this section and integrate it into its incremental decision making.
The lack of clarity manifested as unexpected behavior when using
getImportedModules to create the module import graph. The new behavior
makes SPI-ness and Shadowing-ness behave similarly in terms of
filtering. We also check if a filter is well-formed to avoid
accidental empty import lists.
Instead of using `UnresolvedType` as a placeholder for a type hole,
let's switch over to a dedicated "rich" `HoleType` which is capable
of storing "originator" type - type variable or dependent member
type which couldn't be resolved.
This makes it easier for the solver to determine origins of
a hole which helps to diagnose certain problems better. It also
helps code completion to locate "expected type" of the context
even when it couldn't be completely resolved.
When there are sil_property and sil_differentiability_witness at once,
serialized file couldn't be deserialized because it's index table is
serialized un-sortedly but deserializer assumes that contents of table
index are sorted.
This patch fixes the un-sorted serialization and adds test case to
ensure that table index contents can be deserialized
Since the two ExtInfos share a common ClangTypeInfo, and C++ doesn't let us
forward declare nested classes, we need to hoist out AnyFunctionType::ExtInfo
and SILFunctionType::ExtInfo to the top-level.
We also add some convenience APIs on (AST|SIL)ExtInfo for frequently used
withXYZ methods. Note that all non-default construction still goes through the
builder's build() method.
We do not add any checks for invariants here; those will be added later.
Add `async` to the type system. `async` can be written as part of a
function type or function declaration, following the parameter list, e.g.,
func doSomeWork() async { ... }
`async` functions are distinct from non-`async` functions and there
are no conversions amongst them. At present, `async` functions do not
*do* anything, but this commit fully supports them as a distinct kind
of function throughout:
* Parsing of `async`
* AST representation of `async` in declarations and types
* Syntactic type representation of `async`
* (De-/re-)mangling of function types involving 'async'
* Runtime type representation and reconstruction of function types
involving `async`.
* Dynamic casting restrictions for `async` function types
* (De-)serialization of `async` function types
* Disabling overriding, witness matching, and conversions with
differing `async`
VarPattern is today used to implement both 'let' and 'var' pattern bindings, so
today is already misleading. The reason why the name Var was chosen was done b/c
it is meant to represent a pattern that performs 'variable binding'. Given that
I am going to add a new 'inout' pattern binding to this, it makes sense to
give it now a better fitting name before I make things more confusing.
In -swift-version 5 and earlier, #file will continue to be a synonym for #filePath; in a future -swift-version (“Swift 6 mode”), it will become a synonym for #fileID. #file in libraries will be interpreted according to the language mode the library was compiled in, not the language mode its client uses.
Implement this behavior, tied to a frontend flag instead of a language version. We do so by splitting the old `MagicIdentifierLiteralExprKind::File` into two separate cases, `FileIDSpelledAsFile` and `FilePathSpelledAsFile`, and propagating this distinction throughout the AST. This seems cleaner than looking up the setting for the module the declaration belongs to every time we see `File`.
This doesn’t handle module interfaces yet; we’ll take care of those in a separate commit.
SILType and SILDeclRef do not actually need anything from SIL/*.h. Also,
a few dependencies can be pushed out of the headers into cpp files to
speed up incremental rebuilds.
This makes it easier to specify OptionSet arguments.
Also modify appropriate uses of ModuleDecl::ImportFilter to take
advantage of the new constructor.