An "abstract" ProtocolConformanceRef is a conformance of a type
parameter or archetype to a given protocol. Previously, we would only
store the protocol requirement itself---but not track the actual
conforming type, requiring clients of ProtocolConformanceRef to keep
track of this information separately.
Record the conforming type as part of an abstract ProtocolConformanceRef,
so that clients will be able to recover it later. This is handled by a uniqued
AbstractConformance structure, so that ProtocolConformanceRef itself stays one
pointer.
There remain a small number of places where we create an abstract
ProtocolConformanceRef with a null type. We'll want to chip away at
those and establish some stronger invariants on the abstract conformance
in the future.
* [CS] Decline to handle InlineArray in shrink
Previously we would try the contextual type `(<int>, <element>)`,
which is wrong. Given we want to eliminate shrink, let's just bail.
* [Sema] Sink `ValueMatchVisitor` into `applyUnboundGenericArguments`
Make sure it's called for sugar code paths too. Also let's just always
run it since it should be a pretty cheap check.
* [Sema] Diagnose passing integer to non-integer type parameter
This was previously missed, though would have been diagnosed later
as a requirement failure.
* [Parse] Split up `canParseType`
While here, address the FIXME in `canParseTypeSimpleOrComposition`
and only check to see if we can parse a type-simple, including
`each`, `some`, and `any` for better recovery.
* Introduce type sugar for InlineArray
Parse e.g `[3 x Int]` as type sugar for InlineArray. Gated behind
an experimental feature flag for now.
When performing lazy module serialization, we may be making the first attempt
to turn an `AvailableAttr` into a `SemanticAvailableAttr`. If it turns out the
attribute is invalid at that point, we need to skip it instead of assuming
that the attribute will always be valid there.
Resolves rdar://147539902.
When code in the current module defaults to main actor (under SE-0466),
also infer main-actor isolation for protocol conformances of main-actor
isolated types.
Instead of using the `isolated P` syntax, switch to specifying the
global actor type directly, e.g.,
class MyClass: @MainActor MyProto { ... }
No functionality change at this point
We introduce a new macro called #SwiftSettings that can be used in conjunction
with a new stdlib type called SwiftSetting to control the default isolation at
the file level. It overrides the current default isolation whether it is the
current nonisolated state or main actor (when -enable-experimental-feature
UnspecifiedMeansMainActorIsolated is set).
To pave the way for the new experimental feature which will operate on '@const' attribute and expand the scope of what's currently handled by '_const' without breaking compatibility, for now.
When `ExtensibleEnums` flag is set, it's going to be reflected in
the module file produced by the compiler to make sure that consumers
know that non-`@frozen` enumerations can gain new cases in the
future and switching cannot be exhaustive.
This patch adds support for serialization of debug value instructions. Enablement is currently gated behind the -experimental-serialize-debug-info flag.
Previously, debug_value instructions were lost during serialization. This made it harder to debug cross module inlined functions.
Map the lifetime dependencies described in terms of the formal AST-level parameters
to the correct parameter(s) in the lowered SIL function type. There can be 0, 1,
or many SIL parameters per formal parameter because of tuple exploding. Also,
record which dependencies are on addressable parameters (meaning that the dependency
includes not only the value of the parameter, but its specific memory location).
This would make sure that async function types marked as `@execution(caller)`
have correct isolation.
Also defines all of the possible conversions to and from `caller`
isolated function types.
Add ability to automatically chaining the bridging headers discovered from all
dependencies module when doing swift caching build. This will eliminate all
implicit bridging header imports from the build and make the bridging header
importing behavior much more reliable, while keep the compatibility at maximum.
For example, if the current module A depends on module B and C, and both B and
C are binary modules that uses bridging header, when building module A,
dependency scanner will construct a new header that chains three bridging
headers together with the option to build a PCH from it. This will make all
importing errors more obvious while improving the performance.
Checking whether a declaration is in a `.swiftinterface` is a very common query
that is made somewhat awkward because declarations are not always in source
files. To make these checks more ergonomic, expose a convenience on
DeclContext.
When using `-experimental-skip-all-function-bodies` we don’t run the `TypeCheckSourceFileRequest` and thus don’t go through the decl checker, which calls `InheritedTypeRequest` on all inheritance clauses. This means that the inherited entries are not populated by the time we serialize the module. Trigger the computation of inherited entries by calling `InheritedTypeRequest` during serialization.
Unfortunately, we can’t use the type returned by `getResolvedType` for the serialization because `getResolvedType` returns an inverted protocol type for suppressed conformances but during serialization, we want to serialize the suppressed type with a `isSuppressedBit`. We thus need to call `getEntry(i).getType()` again to get the type to serialize.
rdar://141440011
Most of the compiler should use SemanticAvailableAttr instead. In contexts like
ASTDumper where a semantic attribute is unavailable use accessors on
AvailableAttr.
NFC.
Now that AvailableAttr has storage for its cached AvailabilityDomain, it's no
longer necessary to store an AvailabilityDomain inline in
SemanticAvailableAttr.
NFC.
Right now it is basically a version of nonisolated beyond a few simple cases
like constructors/destructors where we are pretty sure we want to not support
this.
This is part of my bringup strategy for changing nonisolated/unspecified to be
caller isolation inheriting.
I need this today to add the implicit isolated parameter... but I can imagine us
adding more implicit parameters in the future, so it makes sense to formalize it
so it is easier to do in the future.
Extend the module trace format with a field indicating whether a given
module, or any module it depends on, was compiled with strict memory
safety enabled. This separate output from the compiler can be used as
part of an audit to determine what parts of Swift programs are built
with strict memory safety checking enabled.
When Swift passes search paths to clang, it does so directly into the HeaderSearch. That means that those paths get ordered inconsistently compared to the equivalent clang flag, and causes inconsistencies when building clang modules with clang and with Swift. Instead of touching the HeaderSearch directly, pass Swift search paths as driver flags, just do them after the -Xcc ones.
Swift doesn't have a way to pass a search path to clang as -isystem, only as -I which usually isn't the right flag. Add an -Isystem Swift flag so that those paths can be passed to clang as -isystem.
rdar://93951328
Protocol conformances have a handful attributes that can apply to them
directly, including @unchecked (for Sendable), @preconcurrency, and
@retroactive. Generalize this into an option set that we carry around,
so it's a bit easier to add them, as well as reworking the
serialization logic to deal with an arbitrary number of such options.
Use this generality to add support for @unsafe conformances, which are
needed when unsafe witnesses are used to conform to safe requirements.
Implement general support for @unsafe conformances, including
producing a single diagnostic per missing @unsafe that provides a
Fix-It and collects together all of the unsafe witnesses as notes.
This attribute will allow you to specify an alternate version of the declaration used for mangling. It will allow minor adjustments to be made to declarations so long as they’re still compatible at the calling convention level, such as refining isolation or sendability, renaming without breaking ABI, etc.
The attribute is behind the experimental feature flag `ABIAttribute`.
Introduce an attribute to allow unsafe code within the annotated
declaration without presenting an unsafe interface to users. This is,
by its nature, and unsafe construct, and is used to document where
unsafe behavior is encapsulated in safe constructs.
There is an optional message that can be used as part of an audit
trail.