When deriving witnesses for protocol conformances within an
actor-isolated type, make those members 'nonisolated'. In the case
where this would work, for example because some of the state is
mutable, don't allow derivation of those witnesses.
Fixes rdar://90233250.
Abstract away the TupleExpr gunk and expose
`getLHS` and `getRHS` accessors. This is in
preparation for completely expunging the use
of TupleExpr as an argument list.
There are a number of occurances that create implicit `Switch`s by passing `SourceLoc()` for all location paramters. Refactor those occurances out to a separate `createImplicit` method that automatically fills the locations with invalid source locations.
At the moment, if there is an error in the `switch` statement expression or if the `{` is missing, we return `nullptr` from `parseStmtSwitch`, but we consume tokens while trying to parse the `switch` statement. This causes the AST to not contain any nodes for the tokens that were consumed while trying to parse the `switch` statement.
While this doesn’t cause any issues during compilation (compiling fails anyway so not having the `switch` statement in the AST is not a problem) this causes issues when trying to complete inside an expression that was consumed while trying to parse the `switch` statement but doesn’t have a representation in the AST. The solver-based completion approach can’t find the expression that contains the completion token (because it’s not part of the AST) and thus return empty results.
To fix this, make sure we are always creating a `SwitchStmt` when consuming tokens for it.
Previously, one could always assume that a `SwitchStmt` had a valid `LBraceLoc` and `RBraceLoc`. This is no longer the case because of the recovery. In order to form the `SwitchStmt`’s `SourceRange`, I needed to add a `EndLoc` property to `SwitchStmt` that keeps track of the last token in the `SwitchStmt`. Theoretically we should be able to compute this location by traversing the right brace, case stmts, subject expression, … in reverse order until we find something that’s not missing. But if the `SubjectExpr` is an `ErrorExpr`, representing a missing expression, it might have a source range that points to one after the last token in the statement (this is due to the way the `ErrorExpr` is being constructed), therefore returning an invalid range. So overall I thought it was easier and safer to add another property.
Fixes rdar://76688441 [SR-14490]
`SourceEntityWalker` had an unbalanced `walkToDeclPre` and
`walkToDeclPost`, ie. `walkToDeclPost` could be called even though
`walkToDeclPre` was not. Specifically, this would occur for both
`OperatorDecl` and `PrecedenceGroupDecl` declarations.
These could both be added to the `if` in `walkToDeclPost`, but this
seems fairly errorprone in general - especially as new decls are added.
Indeed, there's already declarations that are being skipped because they
aren't explicitly tested for in `walkToDeclPre`, ie.
`PatternBindingDecl`.
Instead of skipping if not explcitly handled, only skip running the
`SEWalker` walk methods if the declaration is implicit (and not a
constructor decl, see TODO). This should probably also always visit
children, with various decls changed to become implicit (eg.
TopLevelCodeDecl), but we can do that later - breaks too many tests for
now.
This change exposed a few parameter declarations that were missing their
implicit flag, as well as unbalanced walk methods in `RangeResolver`.
We'll need this to get the right 'selfDC' when name lookup
finds a 'self' declaration in a capture list, eg
class C {
func bar() {}
func foo() {
_ = { [self] in bar() }
}
}
Add `async` to the type system. `async` can be written as part of a
function type or function declaration, following the parameter list, e.g.,
func doSomeWork() async { ... }
`async` functions are distinct from non-`async` functions and there
are no conversions amongst them. At present, `async` functions do not
*do* anything, but this commit fully supports them as a distinct kind
of function throughout:
* Parsing of `async`
* AST representation of `async` in declarations and types
* Syntactic type representation of `async`
* (De-/re-)mangling of function types involving 'async'
* Runtime type representation and reconstruction of function types
involving `async`.
* Dynamic casting restrictions for `async` function types
* (De-)serialization of `async` function types
* Disabling overriding, witness matching, and conversions with
differing `async`
Like switch cases, a catch clause may now include a comma-
separated list of patterns. The body will be executed if any
one of those patterns is matched.
This patch replaces `CatchStmt` with `CaseStmt` as the children
of `DoCatchStmt` in the AST. This necessitates a number of changes
throughout the compiler, including:
- Parser & libsyntax support for the new syntax and AST structure
- Typechecking of multi-pattern catches, including those which
contain bindings.
- SILGen support
- Code completion updates
- Profiler updates
- Name lookup changes