The implementation of the ObjC -retain method saved a local variable and returned that after calling swift_retain, which forced it to create a stack frame. swift_retain returns the object being retained, so we can take advantage of that to have the compiler emit a tail call to it instead.
It's possible that the job we enqueue holds the last strong reference to the actor. If that job runs on another thread after we enqueue it, then it's possible for `this` to be destroyed while we're still in this function. We need to use `this` after the enqueue when the priorities don't match. When it looks like that will happen, retain `this` before the enqueue to ensure it stays alive until we're done with it.
Introduce a defensive retain helper class that makes it easy to do a single retain under certain conditions even in a loop, and does RAII to balance it with a release when the scope exits.
rdar://135400933
clang-15 requires `extern "C"` to be the first attribute and does not
allow mixing GNU attributes and standard attributes. Temporarily split
and re-order attributes to prevent compilation errors. Avoid updating
the public stdlib here (`Visibility.h`) and instead add the definitions
to `Config.h`, which all impacted headers and up including.
This should be removed once Swift uses at least stable/20221013, which
has https://reviews.llvm.org/D137979 and would thus allow us to just
move `SWIFT_RUNTIME_EXPORT` to be the first attribute.
Resolves https://github.com/apple/swift/issues/61468.
This is required to a clang change. Attribute need to be in a certain order when building with a newer clang.
This fix might be replaced by something better, e.g. https://github.com/apple/swift/pull/61476
This replaces a number of `#include`-s like this:
```
#include "../../../stdlib/public/SwiftShims/Visibility.h"
```
with this:
```
#include "swift/shims/Visibility.h"
```
This is needed to allow SwiftCompilerSources to use C++ headers which include SwiftShims headers. Currently trying to do that results in errors:
```
swift/swift/include/swift/Demangling/../../../stdlib/public/SwiftShims/module.modulemap:1:8: error: redefinition of module 'SwiftShims'
module SwiftShims {
^
Builds.noindex/swift/swift/bootstrapping0/lib/swift/shims/module.modulemap:1:8: note: previously defined here
module SwiftShims {
^
```
This happens because the headers in both the source dir and the build dir refer to SwiftShims headers by relative path, and both the source root and the build root contain SwiftShims headers (which are equivalent, but since they are located in different dirs, Clang treats them as different modules).
These functions don't accept local variable heap memory, although the names make it sound like they work on anything. When you try, they mistakenly identify such things as ObjC objects, call through to the equivalent objc_* function, and crash confusingly. This adds Object to the name of each one to make it more clear what they accept.
rdar://problem/37285743
lldb will use it to reimplement `language swift refcount <obj>`
which is currently not working. Asking the compiler allows us
to avoid maintinaing a bunch of information in the debugger which
are likely to change and break.
<rdar://problem/30538363>
Check that an ``withoutActuallyEscaping(noescape_closure) { // scope}`` closure
has not escaped in the scope using the ``is_escaping_closure %closure``
instruction.
rdar://35525730
Will be used to verify that withoutActuallyEscaping's block does not
escape the closure.
``%escaping = is_escaping_closure %closure`` tests the reference count. If the
closure is not uniquely referenced it prints out and error message and
returns true. Otherwise, it returns false. The returned result can be
used with a ``cond_fail %escaping`` instruction to abort the program.
rdar://35525730
* Remove RegisterPreservingCC. It was unused.
* Remove DefaultCC from the runtime. The distinction between C_CC and DefaultCC
was unused and inconsistently applied. Separate C_CC and DefaultCC are
still present in the compiler.
* Remove function pointer indirection from runtime functions except those
that are used by Instruments. The remaining Instruments interface is
expected to change later due to function pointer liability.
* Remove swift_rt_ wrappers. Function pointers are an ABI liability that we
don't want, and there are better ways to get nonlazy binding if we need it.
The fully custom wrappers were only needed for RegisterPreservingCC and
for optimizing the Instruments function pointers.
clang is miscompiling some swiftcall functions on armv7s.
Stop using swiftcall in some places until it is fixed.
Reverts c5bf2ec (#13299).
rdar://35973477
This is different from swift_deallocObject in that it applies to objects
at +1 while swift_deallocObject actually only applies to objects whose
state is deiniting (swift_release was called).
On architectures where the calling convention uses the same argument register as
return register this allows the argument register to be live through the calls.
We use LLVM's 'returned' attribute on the parameter to facilitate this.
We used to perform this optimization via an optimization pass. This was ripped
out some time ago around commit 955e4ed652.
By using LLVM's 'returned' attribute on swift_*retain, we get the same
optimization from the LLVM backend.
* IRGen: EmptyBoxType's representation cannot be nil because of a conflict with extra inhabitant assumption in indirect enums
We map nil to the .None case of Optional. Instead use a singleton object.
SR-5148
rdar://32618580
It is safe to test pointer equality of an unowned variable, even if
the unowned variable refers to a dead object. Allowing this operation
without an unnecessary unowned abort enables some kinds of caching
schemes more cheaply than can be done with weak variables.
rdar://32142240
* IRGen: Change c-o-w existential implementation functions
* initialzeBufferWith(Copy|Take)OfBuffer value witness implementation for cow existentials
Implement and use initialzeBufferWith(Copy|Take)OfBuffer value witnesses for
copy-on-write existentials.
Before we used a free standing function but the overhead of doing so was
noticable (~20-30%) on micro benchmarks.
* IRGen: Use common getCopyOutOfLineBoxPointerFunction
* Add a runtime function to conditionally make a box unique
* Fix compilation of HeapObject.cpp on i386
* Fix IRGen test case
* Fix test case for i386
Use the generic type lowering algorithm described in
"docs/CallingConvention.rst#physical-lowering" to map from IRGen's explosion
type to the type expected by the ABI.
Change IRGen to use the swift calling convention (swiftcc) for native swift
functions.
Use the 'swiftself' attribute on self parameters and for closures contexts.
Use the 'swifterror' parameter for swift error parameters.
Change functions in the runtime that are called as native swift functions to use
the swift calling convention.
rdar://19978563