Instead of checking `EnableConstraintSolverPerformanceHacks`
directly, let's use an option which is easier to set i.e.
when a block list is implemented.
We need to have a notion of "complete" binding set before
we can allow inference from generic parameters and ternary,
otherwise we'd make a favoring decision that might not be
correct i.e. `v ?? (<<cond>> ? nil : o)` where `o` is `Int`.
`getBindingsFor` doesn't currently infer transitive bindings
which means that for a ternary we'd only have a single
binding - `Int` which could lead to favoring overload of
`??` and has non-optional parameter on the right-hand side.
Don't attempt this optimization if call has number literals.
This is intended to narrowly fix situations like:
```swift
func test<T: FloatingPoint>(_: T) { ... }
func test<T: Numeric>(_: T) { ... }
test(42)
```
The call should use `<T: Numeric>` overload even though the
`<T: FloatingPoint>` is a more specialized version because
selecting `<T: Numeric>` doesn't introduce non-default literal
types.
(cherry picked from commit 8d5cb112ef)
This is currently unused because current mechanism set favored choices
directly but it would be utilized by the disjunction optimizer.
(cherry picked from commit e404ed722a)
My change 983b75e1cf broke
-warn-long-expression-type-checking because now the
ExpressionTimer is not instantiated by default and that
entire code path is skipped.
Change it so that if -warn-long-expression-type-checking
is passed in, we still start the timer, we just don't
ever consider it to have 'expired'.
Fixes rdar://problem/152998878.
- 'SwiftModuleScanner' will now be owned directly by the 'ModuleDependencyScanningWorker' and will contain all the necessary custom logic, instead of being instantiated by the module interface loader for each query
- Moves ownership over module output path and sdk module output path directly into the scanning worker, instead of the cache
Package the flag into `performanceHacksEnabled()` method on
`ConstraintSystem` and start using it to wrap all of the hacks
in constraint generator and the solver.
NFC *except* that I noticed a bug by inspection where we suppress
`@escaping` when print enum element types. Since this affects
recursive positions, we end up suppressing `@escaping` in places
we shouldn't. This is unlikely to affect much real code, but should
still obviously be fixed.
The new design is a little sketchy in that we're using `const` to
prevent direct use (and allow initialization of `const &` parameters)
but still relying on modification of the actual object. Essentially,
we are treating the `const`-ness of the reference as a promise to leave
the original value in the object after computation rather than a
guarantee of not modifying the object. This is okay --- a temporary
bound to a `const` reference is still a non-`const` object formally
and can be modified without invoking UB --- but makes me a little
uncomfortable.
If generic arguments mismatch ends up being recorded on the result
of the chain or `try` expression it means that there is a contextual
conversion mismatch.
For optional conversions the solver currently generates a disjunction
with two choices - bind and optional-to-optional conversion which is
anchored on the contextual expression. If we can get a fix recorded
there that would result in a better diagnostic. It's only possible
for optional-to-optional choice because it doesn't bind the
variable immediately, so we need to downgrade direct fixes to prevent
`bind` choice from considered better.
Without contextual information it won't be possible to bind a missing
member to a concrete type later, so let's bind them eagerly and propagate
placeholders outward.
Resolves: rdar://152021264
Resolves: https://github.com/swiftlang/swift/issues/81770
This matches send non sendable but importantly also makes it clear that we are
talking about something that doesn't conform to the Sendable protocol which is
capitalized.
rdar://151802975
Factor out `ConstraintSystem::getExplicitCaughtErrorType` from
`getCaughtErrorType`. Then use this for the contextual
type for a `throw` syntactic element.
rdar://139000351