This does not enable it by default. Use either of the flags:
```
-enable-copy-propagation
-enable-copy-propagation=always
```
to enable it in -Onone. The previous frontend flag
`-enable-copy-propagation=true` has been renamed to
`-enable-copy-propagation=optimizing`, which is currently default.
rdar://107610971
If these programs crash, we want them to print the Swift bug report
message, not the default LLVM one, which leads to
https://github.com/llvm/llvm-project/issues.
While here, hoist the setting of the bug report message to the
START_PROGRAM macro so that we don't forget to set it in the future.
Infer the `-target` argument to `swift-synthesize-interface` to be the host
triple when unspecified instead of emitting an error.
Resolves rdar://156353450.
Since LayoutPrespecialization has been enabled by default in all compiler
invocations for quite some time, it doesn't make sense for it to be treated as
experimental feature. Make it a baseline feature and remove all the
checks for it from the compiler.
AllowDeserializingImplementationOnly was historically added as a defensive
check against deserailzation issues introduced by @implementationOnly imports.
It's no longer specified by other tools, thus the ABI checker should drop
it as well.
rdar://153683760
Textual interfaces for 'Darwin' built with recent compilers specify that it is built witout C++ interop enabled. However, to ensure compatibility with versions of the 'Darwin' module built with older compilers, we hard-code this fact. This is required to break the module cycle that occurs when building the 'Darwin' module with C++ interop enabled, where the underlying 'Darwin' clang module depends on C++ standard library for which the compiler brings in the 'CxxStdlib' Swift overlay, which depends on 'Darwin'.
Improve diagnostics message for swift caching build by trying to emit
the diagnostics early when there is more context to differentiate the
different kind of problems.
After the improvement, CAS Error should be more closer to when there is
functional problem with the CAS, rather than mixing in other kinds of
problem (like scanning dependency failures) when operating with a CAS.
rdar://145676736
The Runtime module requires C++ interop enabled, because that's
the only way to robustly fix things so that it is able to declare various
types and constants without clashing with system headers.
To make this work, we also need to add a missing invocation to sil-opt to
make it pick the correct C++ runtime library.
rdar://143050566
Move the backtracing code into a new Runtime module. This means renaming
the Swift Runtime's CMake target because otherwise there will be a name
clash.
rdar://124913332
When Swift passes search paths to clang, it does so directly into the HeaderSearch. That means that those paths get ordered inconsistently compared to the equivalent clang flag, and causes inconsistencies when building clang modules with clang and with Swift. Instead of touching the HeaderSearch directly, pass Swift search paths as driver flags, just do them after the -Xcc ones.
Swift doesn't have a way to pass a search path to clang as -isystem, only as -I which usually isn't the right flag. Add an -Isystem Swift flag so that those paths can be passed to clang as -isystem.
rdar://93951328
Rather than exposing an `addFile` member on
ModuleDecl, have the `create` members take a
lambda that populates the files for the module.
Once module construction has finished, the files
are immutable.
Add a new bits/ header to the Android overlay, include runtime libraries that are
auto-extracted and listed many times to the list of libraries to be de-duplicated,
enable a C++ interop test that's working again, and update the doc with new
libraries that need to be available to run a simple executable.
The `-include-submodules` flag causes the synthesized interface to include
implicit Clang submodules of the module being printed. Since these are
automatically made visible when importing the corresponding top-level module,
it's often useful to have them present in the same synthesized Swift
interface instead of having to make separate invocations to get each
submodule separately.
The `-print-fully-qualified-types` causes type names to be printed with
full module qualification. This is useful when using the synthesized
interface for some other kind of analysis, because it ensures that all
type references explicitly indicate which module they came from, instead
of having to guess scoping and import resolution rules to figure out
which module a reference comes from.