This avoids storing and then loading arguments when the ABI type matches
the type used in the body of the function. This is important for types
like a boolean type represented as i1 where the storage type differs.
Fixes <rdar://problem/16040488>.
Swift SVN r13844
Updates to signature expansion, entrypoint lowering, and callsite
lowering so that each selects the ABI types for all arguments at once
rather than an argument at a time (as well as considering whether the
return value is returned indirectly). This is required to get the
correct behavior in cases where we run out of argument registers and
need to pass arguments as indirect byvals.
This is mostly just refactoring existing code to move loops inside inner
functions as well as dealing with return values at the same time as
arguments.
Swift SVN r13781
When projecting an existential into an opened archetype, bind the
archetype with metadata and witness tables extracted from the
existential. Tweak SILGen so that it doesn't destroy the opened
archetype value an extra two times.
Use an executable testcase to ensure end-to-end operation, because we
still don't have a parsable form existential projection to opened
archetype instructions.
Swift SVN r13755
Refactor the base PolymorphicConvention implementation to work using generic signatures and dependent types instead of GenericParamLists and archetypes, using an ArchetypeBuilder to produce representative archetypes as a convenience when we need to consider all of the requirements attached to a dependent type. In EmitPolymorphicParameters, map the dependent types into context to resolve the archetypes that should be bound in the body of the function.
Swift SVN r13685
Reapply r13532 fixes for dealing with arguments that should be exploded
for C/Obj-C functions.
This gets us a bit closer to properly generating the correct types for
arguments. The remaining piece is generating all the argument types at
once rather than one at a time, which also requires being able to always
generate Clang types for the Swift types we see in the signatures of
these functions.
Swift SVN r13638
- purge @inout from comments in the compiler except for places talking about
the SIL argument convention.
- change diagnostics to not refer to @inout
- Change the astprinter to print InoutType without the @, so it doesn't show
up in diagnostics or in closure argument types in code completion.
- Implement type parsing support for the new inout syntax (before we just
handled patterns).
- Switch the last couple of uses in the stdlib (in types) to inout.
- Various testcase updates (more to come).
Swift SVN r13564
This gets us a bit closer to properly generating the correct types for
arguments. The remaining piece is generating all the argument types at
once rather than one at a time.
That part cannot happen until we can always generate Clang types for
the Swift types we see in the signatures of these functions.
Swift SVN r13532
which is the address of the string data. Have SILGen compute and produce the
isASCII bit as an integer literal, and remove the logic from IRGen.
This overall approach is simpler and enables better SIL-level optimizations.
Swift SVN r13363
Split out argument emission into a function that handles calling into
Swift calling convention functions and a function that handles
foreign ("external") calling conventions.
The emission for foreign calling conventions simply falls back on the
one for Swift calling conventions at the moment, i.e. there is no change
in behavior yet.
Swift SVN r13282
We need to model the difference between Objective-C- and Swift-rooted
class hierarchies in SIL. IRGen is too late to handle nil returns.
This reverts commit 549db981ea0136a67aee3029aefe18a05d3c8833.
Swift SVN r12400
Swift-rooted class hierarchies don't permit the replacement of "self",
so it's guaranteed that the 'self' returned from a 'super.init'
invocation is identical to the previous self. Elide the unconditional
checked downcast (that manifests as a call to
swift_dynamicCastClassUnconditional in the runtime) by simply putting
a bitcast in its place.
For Objective-C-rooted hierarchies, 'self' can be replaced so memory
safety dictates that we keep the
swift_dynamicCastClassUnconditional(). Note that this path is still
unsafe against nil returns.
Swift SVN r12384
No functional difference from the unconditional checked downcast we
had before, but this gives IRGen the chance to specialize the
implementation.
Swift SVN r12382
the location of a DebugValueInst is not a Decl.
FIXME: This should probably not happen <rdar://problem/15825786>.
This reverts commit 12323 + bugfix.
Swift SVN r12332
give 'let' declarations debug info. This is part of rdar://15785053.
IRGen is just stubbed out and nothing generates these yet (other than
the sil parser).
Swift SVN r12179
Note that this lowering currently assumes that the static type of the class is its dynamic type. This should be a flag on the dealloc_ref instruction, not an assumption.
Swift SVN r12144
IRGen type conversion is invariant with respect to archetypes with the same set of constraints, so instead of redundantly generating a TypeInfo object and IR type for Optional<T> for every T everywhere, key TypeInfo objects using an "exemplar type" that we form using a folding set to collapse together archetypes with the same class-ness, superclass constraint, and protocol constraints.
This is a nice memory and IR size optimization, but will be essential for correctness when lowering interface types, because there is no unique context to ground a dependent type, and we need to lower the same generic parameter with the same context requirements to the same type whenever we instantiate it in order for the IR to type-check.
In this revision, we profile the nested archetypes of each recursively, which I neglected to take into account originally in r12112, causing failures when archetypes that differed by associated type constraints were incorrectly collapsed.
Swift SVN r12116
IRGen type conversion is invariant with respect to archetypes with the same set of constraints, so instead of redundantly generating a TypeInfo object and IR type for Optional<T> for every T everywhere, key TypeInfo objects using an "exemplar type" that we form using a folding set to collapse together archetypes with the same class-ness, superclass constraint, and protocol constraints.
This is a nice memory and IR size optimization, but will be essential for correctness when lowering interface types, because there is no unique context to ground a dependent type, and we need to lower the same generic parameter with the same context requirements to the same type whenever we instantiate it in order for the IR to type-check.
Swift SVN r12112
In general, this forces SILGen and IRGen code that's grabbing
a declaration to state whether it's doing so to define it.
Change SIL serialization to serialize the linkage of functions
and global variables, which means also serializing declarations.
Change the deserializer to use this stored linkage, even when
only deserializing a declaration, and to call a callback to
inform the client that it has deserialized a new entity.
Take advantage of that callback in the linking pass to alter
the deserialized linkage as appropriate for the fact that we
imported the declaration. This computation should really take
advantage of the relationship between modules, but currently
it does not.
Swift SVN r12090
Split 'destructive_switch_enum_addr' into separate 'switch_enum_addr' and 'take_enum_data_addr' instructions. This should unblock some optimization work we would like to do with enums.
Swift SVN r12015