Store specialize witness tables in a separate lookup table in the module. This allows that for a normal conformance there can exist the original _and_ a specialized witness table.
Also, add a boolean property `isSpecialized` to `WitnessTable` which indicates whether the witness table is specialized or not.
This corrects how we were dealing with dispatch thunks -- mostly be
removing a lot of special casing we did but doesn't seem necessary and
instead we correct and emit all the necessary information int TBD.
This builds on https://github.com/swiftlang/swift/pull/74935 by further refining how we fixed that issue, and adds more regression tests. It also removes a load of special casing of distributed thunks in library evolution mode, which is great.
Resolves and adds regression test for for rdar://145292018
This is also a more proper fix to the previously resolved but in a not-great-way which caused other issues:
- resolves rdar://128284016
- resolves rdar://128310903
Simply omit the 'nocapture' attribute on the parameter.
Fixes rdar://148039510 ([nonescapable] IRGen: lower addressable
params to LLVM: captures(ret: address, provenance))
When generating debug symbols for private Clang types (which we started
importing recently), the compiler crashes due to an assertion failure
from ClangModuleUnit::getDiscriminatorForPrivateDecl(), which is called
by getFilePrivateScope().
This patch fixes the issue crash by not calling getFilePrivateScope()
for Clang types. A discriminator is usually needed to disambiguate
private Swift types declared in different files, but Clang types follow
different scoping conventions that make this discriminator unnecessary.
rdar://148481025
This fixes a regression from a00157ec43.
My change made it so that sourceKey.Kind was checked after being
overwritten with an abstract conformance, so we would never take
the if statement. Incredibly, it almost worked.
Fixes rdar://problem/148698142.
* [SUA][IRGen] Add stub for swift_coroFrameAlloc that weakly links against the runtime function
This commit modifies IRGen to emit a stub function `__swift_coroFrameAllocStub` instead of the
newly introduced swift-rt function `swift_coroFrameAlloc`. The stub checks whether the runtime has the symbol
`swift_coroFrameAlloc` and dispatches to it if it exists, uses `malloc` otherwise. This ensures the
ability to back deploy the feature to older OS targets.
rdar://145239850
* [Distributed] Accessor must be available cross module in resilient mode
This is an important fix for libraries using @Resolvable in resilient
libraries. Without the fix we're missing an accessor and this will fail
some remote calls which make use of remote calls on resolvable
protocols. This would manifest as missing accessor error thrown by the
executeDistributedTarget function.
resolves rdar://148224780
* Disable test on windows since %env not supported
* [Distributed] Dont emit TBD also for distributed thunks
This resolves pedantic "all" TBD validation issues, i.e. we dont emit
unexpected records anymore - we would before as we only checked for
is_distributed but we also want to skip those for is_distributed_thunk
resolves rdar://128284016
* [Distributed] Accessor must be available cross module in resilient mode
This is an important fix for libraries using @Resolvable in resilient
libraries. Without the fix we're missing an accessor and this will fail
some remote calls which make use of remote calls on resolvable
protocols. This would manifest as missing accessor error thrown by the
executeDistributedTarget function.
resolves rdar://148224780
* Disable test on windows since %env not supported
To facilitate back deployment, make use of the fact that the async bit
has up to now never been set for read and modify accessors and claim
that set bit to indicate that it is a callee-allocated coroutine. This
has the virtue of being completely back deployable because like async
function pointers coro function pointers must be auth'd and signed as
data.