The XXOptUtils.h convention is already established and parallels
the SIL/XXUtils convention.
New:
- InstOptUtils.h
- CFGOptUtils.h
- BasicBlockOptUtils.h
- ValueLifetime.h
Removed:
- Local.h
- Two conflicting CFG.h files
This reorganization is helpful before I introduce more
utilities for block cloning similar to SinkAddressProjections.
Move the control flow utilies out of Local.h, which was an
unreadable, unprincipled mess. Rename it to InstOptUtils.h, and
confine it to small APIs for working with individual instructions.
These are the optimizer's additions to /SIL/InstUtils.h.
Rename CFG.h to CFGOptUtils.h and remove the one in /Analysis. Now
there is only SIL/CFG.h, resolving the naming conflict within the
swift project (this has always been a problem for source tools). Limit
this header to low-level APIs for working with branches and CFG edges.
Add BasicBlockOptUtils.h for block level transforms (it makes me sad
that I can't use BBOptUtils.h, but SIL already has
BasicBlockUtils.h). These are larger APIs for cloning or removing
whole blocks.
The ownership kind is Any for trivial types, or Owned otherwise, but
whether a type is trivial or not will soon depend on the resilience
expansion.
This means that a SILModule now uniques two SILUndefs per type instead
of one, and serialization uses two distinct sentinel IDs for this
purpose as well.
For now, the resilience expansion is not actually used here, so this
change is NFC, other than changing the module format.
This disables a bunch of passes when ownership is enabled. This will allow me to
keep transparent functions in ossa and skip most of the performance pipeline without
being touched by passes that have not been updated for ownership.
This is important so that we can in -Onone code import transparent functions and
inline them into other ossa functions (you can't inline from ossa => non-ossa).
This is in preparation for verifying that when ownership verification is enabled
that only enums and trivial values can have any ownership. I am doing this in
preparation for eliminating ValueOwnershipKind::Trivial.
rdar://46294760
Also: add an additional DeadObjectElimination pass in the low level pipeline because
redundant load elimination (which runs before) can turn an object into a dead object.
Also: add an additional DeadObjectElimination pass in the low level pipeline because
redundant load elimination (which runs before) can turn an object into a dead object.
introduce a common superclass, SILNode.
This is in preparation for allowing instructions to have multiple
results. It is also a somewhat more elegant representation for
instructions that have zero results. Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction. Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.
A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.
Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
In dead-array elimination we assume that the array allocation is post-dominated by all its final releases.
The only exception are branches to dead-end ("unreachable") blocks. So we just ignored all paths which didn't end up in a final release.
Now we explicitly pass the set of dead-end blocks and just ignore those blocks.
This is safer and it's also needed in the upcoming re-write of StackPromotion.
Move IndexTrieNode from DeadObjectElimination into its own header. I plan to
use this data structure when diagnosing static violations of exclusive access.
At some point, pass definitions were heavily macro-ized. Pass
descriptive names were added in two places. This is not only redundant
but a source of confusion. You could waste a lot of time grepping for
the wrong string. I removed all the getName() overrides which, at
around 90 passes, was a fairly significant amount of code bloat.
Any pass that we want to be able to invoke by name from a tool
(sil-opt) or pipeline plan *should* have unique type name, enum value,
commend-line string, and name string. I removed a comment about the
various inliner passes that contradicted that.
Side note: We should be consistent with the policy that a pass is
identified by its type. We have a couple passes, LICM and CSE, which
currently violate that convention.
Changes:
* Terminate all namespaces with the correct closing comment.
* Make sure argument names in comments match the corresponding parameter name.
* Remove redundant get() calls on smart pointers.
* Prefer using "override" or "final" instead of "virtual". Remove "virtual" where appropriate.
Before this commit all code relating to handling arguments in SILBasicBlock had
somewhere in the name BB. This is redundant given that the class's name is
already SILBasicBlock. This commit drops those names.
Some examples:
getBBArg() => getArgument()
BBArgList => ArgumentList
bbarg_begin() => args_begin()
1) handle cases where the tuple_extract is not in the same basic block as the init call. This is not a correctness issue, but might miss some opportunities.
2) bail if there are multiple tuple_extract. This is a correctness issue, but a theoretical one. I don't think that in reality we will ever get multiple tuple_extracts out of SILGen.
Reinstates commit 0c2ca94ef7
With two bug fixes:
*) use after free asan crash
*) wrong check in ValueLifetimeAnalysis::isWithinLifetime
And some refactoring
SILValue.h/.cpp just defines the SIL base classes. Referring to specific instructions is a (small) kind of layering violation.
Also I want to keep SILValue small so that it is really just a type alias of ValueBase*.
NFC.
As there are no instructions left which produce multiple result values, this is a NFC regarding the generated SIL and generated code.
Although this commit is large, most changes are straightforward adoptions to the changes in the ValueBase and SILValue classes.
(libraries now)
It has been generally agreed that we need to do this reorg, and now
seems like the perfect time. Some major pass reorganization is in the
works.
This does not have to be the final word on the matter. The consensus
among those working on the code is that it's much better than what we
had and a better starting point for future bike shedding.
Note that the previous organization was designed to allow separate
analysis and optimization libraries. It turns out this is an
artificial distinction and not an important goal.