These changes make the following improvements to how we generate diagnostics for expression typecheck failure:
- Customizing a diagnostic for a specific expression kind is as easy as adding a new method to the FailureDiagnosis class,
and does not require intimate knowledge of the constraint solver’s inner workings.
- As part of this patch, I’ve introduced specialized diagnostics for call, binop, unop, subscript, assignment and inout
expressions, but we can go pretty far with this.
- This also opens up the possibility to customize diagnostics not just for the expression kind, but for the specific types
involved as well.
- For the purpose of presenting accurate type info, partially-specialized subexpressions are individually re-typechecked
free of any contextual types. This allows us to:
- Properly surface subexpression errors.
- Almost completely avoid any type variables in our diagnostics. In cases where they could not be eliminated, we now
substitute in "_".
- More accurately indicate the sources of errors.
- We do a much better job of diagnosing disjunction failures. (So no more nonsensical ‘UInt8’ error messages.)
- We now present reasonable error messages for overload resolution failures, informing the user of partially-matching
parameter lists when possible.
At the very least, these changes address the following bugs:
<rdar://problem/15863738> More information needed in type-checking error messages
<rdar://problem/16306600> QoI: passing a 'let' value as an inout results in an unfriendly diagnostic
<rdar://problem/16449805> Wrong error for struct-to-protocol downcast
<rdar://problem/16699932> improve type checker diagnostic when passing Double to function taking a Float
<rdar://problem/16707914> fatal error: Can't unwrap Optional.None…Optional.swift, line 75 running Master-Detail Swift app built from template
<rdar://problem/16785829> Inout parameter fixit
<rdar://problem/16900438> We shouldn't leak the internal type placeholder
<rdar://problem/16909379> confusing type check diagnostics
<rdar://problem/16951521> Extra arguments to functions result in an unhelpful error
<rdar://problem/16971025> Two Terrible Diagnostics
<rdar://problem/17007804> $T2 in compiler error string
<rdar://problem/17027483> Terrible diagnostic
<rdar://problem/17083239> Mysterious error using find() with Foundation types
<rdar://problem/17149771> Diagnostic for closure with no inferred return value leaks type variables
<rdar://problem/17212371> Swift poorly-worded error message when overload resolution fails on return type
<rdar://problem/17236976> QoI: Swift error for incorrectly typed parameter is confusing/misleading
<rdar://problem/17304200> Wrong error for non-self-conforming protocols
<rdar://problem/17321369> better error message for inout protocols
<rdar://problem/17539380> Swift error seems wrong
<rdar://problem/17559593> Bogus locationless "treating a forced downcast to 'NSData' as optional will never produce 'nil'" warning
<rdar://problem/17567973> 32-bit error message is really far from the mark: error: missing argument for parameter 'withFont' in call
<rdar://problem/17671058> Wrong error message: "Missing argument for parameter 'completion' in call"
<rdar://problem/17704609> Float is not convertible to UInt8
<rdar://problem/17705424> Poor error reporting for passing Doubles to NSColor: extra argument 'red' in call
<rdar://problem/17743603> Swift compiler gives misleading error message in "NSLayoutConstraint.constraintsWithVisualFormat("x", options: 123, metrics: nil, views: views)"
<rdar://problem/17784167> application of operator to generic type results in odd diagnostic
<rdar://problem/17801696> Awful diagnostic trying to construct an Int when .Int is around
<rdar://problem/17863882> cannot convert the expression's type '()' to type 'Seq'
<rdar://problem/17865869> "has different argument names" diagnostic when parameter defaulted-ness differs
<rdar://problem/17937593> Unclear error message for empty array literal without type context
<rdar://problem/17943023> QoI: compiler displays wrong error when a float is provided to a Int16 parameter in init method
<rdar://problem/17951148> Improve error messages for expressions inside if statements by pre-evaluating outside the 'if'
<rdar://problem/18057815> Unhelpful Swift error message
<rdar://problem/18077468> Incorrect argument label for insertSubview(...)
<rdar://problem/18079213> 'T1' is not identical to 'T2' lacks directionality
<rdar://problem/18086470> Confusing Swift error message: error: 'T' is not convertible to 'MirrorDisposition'
<rdar://problem/18098995> QoI: Unhelpful compiler error when leaving off an & on an inout parameter
<rdar://problem/18104379> Terrible error message
<rdar://problem/18121897> unexpected low-level error on assignment to immutable value through array writeback
<rdar://problem/18123596> unexpected error on self. capture inside class method
<rdar://problem/18152074> QoI: Improve diagnostic for type mismatch in dictionary subscripting
<rdar://problem/18242160> There could be a better error message when using [] instead of [:]
<rdar://problem/18242812> 6A1021a : Type variable leaked
<rdar://problem/18331819> Unclear error message when trying to set an element of an array constant (Swift)
<rdar://problem/18414834> Bad diagnostics example
<rdar://problem/18422468> Calculation of constant value yields unexplainable error
<rdar://problem/18427217> Misleading error message makes debugging difficult
<rdar://problem/18439742> Misleading error: "cannot invoke" mentions completely unrelated types as arguments
<rdar://problem/18535804> Wrong compiler error from swift compiler
<rdar://problem/18567914> Xcode 6.1. GM, Swift, assignment from Int64 to NSNumber. Warning shown as problem with UInt8
<rdar://problem/18784027> Negating Int? Yields Float
<rdar://problem/17691565> attempt to modify a 'let' variable with ++ results in typecheck error about @lvalue Float
<rdar://problem/17164001> "++" on let value could give a better error message
Swift SVN r23782
a capture list hung off the CaptureExpr it was associated with. This made
sense lexically (since a capture list is nested inside of the closure) but
not semantically. Semantically, the capture list initializers are evaluated
outside the closure, the variables are bound to those values, then the closure
captures the newly bound values.
To directly represent this, represent captures with a new CaptureListExpr node,
which contains the ClosureExpr inside of it. This correctly models the semantic
relationship, and makes sure that AST walkers all process the initializers of the
capture list as being *outside* of the closure.
This fixes rdar://19146761 and probably others.
Swift SVN r23756
You'll notice that emitting this diagnostic will make some already noisy closure-related errors slightly more so. This is unfortunate, but for the time-being it's better than crashing.
Swift SVN r21817
This already can't happen in most circumstances because of trailing closures, but we didn't explicitly disallow it at the beginning of a BraceStmt or following a statement production. Fixes the parser part of rdar://problem/17850752 (though there's a type checker bug there too).
Swift SVN r21663
Modify TypeBase::getRValueType to structurally convert lvalues embedded in tuple and paren types. Inside the constraint solver, coerce types to rvalues based on the structural 'isLValueType' test rather than shallow 'is<LValueType>' checking. Fixes <rdar://problem/17507421>, but exposes an issue with call argument matching and lvalues <rdar://problem/17786730>.
Swift SVN r20442
expression applications
(rdar://problem/15933674, rdar://problem/17365394 and many, many dupes.)
When solving for the type of a binOp expression, factor the operand expression
types into account when collating overloads for the operator being applied.
This allows the type checker to now infer types for some binary operations with
hundreds of nested components, whereas previously we could only handle a handful.
(E.g., "1+2+3+4+5+6" previously sent the compiler into a tailspin.)
Specifically, if one of the operands is a literal, favor operator overloads
whose operand, result or contextual types are the default type of the literal
convertible conformance of the the argument literal type.
By doing so we can prevent exponential behavior in the solver and massively
reduce the complexity of many commonly found constraint systems. At the same
time, we'll still defer to "better" overloads if the default one cannot be
applied. (When adding an Int8 to an Int, for example.)
This obviously doesn't solve all of our performance problems (there are more
changes coming), but there are couple of nice side-effects:
- By tracking literal/convertible protocol conformance info within type
variables, I can potentially eliminate many instances of "$T0" and the
like from our diagnostics.
- Favored constraints are placed at the front of the overload resolution
disjunction, so if a system fails to produce a solution they'll be the
first to be mined for a cause. This helps preserve user intent, and leads
to better diagnostics being produced in some cases.
Swift SVN r19848
Do this by only warning on self-referential uses of a variable when there's
not another binding found in the local scope. This probably still restricts
some reasonable edge cases, but it at least allows shadowing the variable
with a local name.
<rdar://problem/17087232>
Swift SVN r18771
There's a lot more work to do here, but start to categorize tests
along the lines of what a specification might look like, with
directories (chapters) for basic concepts, declarations, expressions,
statements, etc.
Swift SVN r9958