https://github.com/swiftlang/swift/pull/79807 caused a regression in which
`AvailabilityContext` stopped tracking the available version range for the
active platform domain for certain platforms. Fix this by reverting to checking
`AvailabilityDomain::isActive()` to determine when a given platform
`AvailabilityDomain` represents the target platform. The compiler's existing
mapping from target triple to platform domain is incomplete and it's not clear
to me whether fixing that could cause other regressions.
Resolves rdar://147413616.
`AvailabilityRange` is now being used as a currency type in more of the
compiler, and some of those uses are in permanent `ASTContext` allocations. The
class wraps the `VersionRange` utility, which is itself a wrapper around
`llvm::VersionTuple` with some additional storage for representing sentinel
values. Even though the two sentinel values can be be represented with just a
single bit of additional storage on top of the 16 bytes required to represent
`VersionTuple`, because of alignment requirements the sentinel values end up
bloating the layout of `VersionRange` by many bytes.
To make `AvailabilityRange` and `VersionRange` more efficient to store, we can
instead reserve two unlikely `llvm::VersionTuple` bit patterns as the sentinel
values instead. The values chosen are the same ones LLVM uses to represent
version tuple tombstones and empty keys in a `DenseMap`.
Introduce a constructor that takes an `llvm::VersionTuple` directly, instead of
needing to spell out `VersionRange::allGTE(<tuple>)` which is unnecessarily
verbose.
Now that `AvailabilityContext` supports multiple unavailable domains, it's no
longer necessary to have a total ordering amongst the Swift,
PackageDescription, and Embedded availability domains.
One to get the active domain for the compilation target and another to get the
ABI compatibility domain for a given domain. The ABI compatibility domain will
be needed for queries that compute whether an unavailable declaration is still
reachable at runtime.
NFC.
This operation describes the partial ordering with which Availability domains
form a lattice.
As a temporary measure, a containment ordering needs to be specified for the
Swift language, Embedded, and Package Description domains. Without this
ordering, there won't be a way for AvailabilityContext to preserve the
invariant that the unavailable domain of a child context contains the
unavailable domain for the parent. However, once AvailabilityContext is
refactored to represent the status of multiple availability domains
simultaneously, the ordering of these domains relative to each other can be
relaxed.
NFC.
Rather than exposing an `addFile` member on
ModuleDecl, have the `create` members take a
lambda that populates the files for the module.
Once module construction has finished, the files
are immutable.
Today ParenType is used:
1. As the type of ParenExpr
2. As the payload type of an unlabeled single
associated value enum case (and the type of
ParenPattern).
3. As the type for an `(X)` TypeRepr
For 1, this leads to some odd behavior, e.g the
type of `(5.0 * 5).squareRoot()` is `(Double)`. For
2, we should be checking the arity of the enum case
constructor parameters and the presence of
ParenPattern respectively. Eventually we ought to
consider replacing Paren/TuplePattern with a
PatternList node, similar to ArgumentList.
3 is one case where it could be argued that there's
some utility in preserving the sugar of the type
that the user wrote. However it's really not clear
to me that this is particularly desirable since a
bunch of diagnostic logic is already stripping
ParenTypes. In cases where we care about how the
type was written in source, we really ought to be
consulting the TypeRepr.
The "buffer ID" in a SourceFile, which is used to find the source file's
contents in the SourceManager, has always been optional. However, the
effectively every SourceFile actually does have a buffer ID, and the
vast majority of accesses to this information dereference the optional
without checking.
Update the handful of call sites that provided `nullopt` as the buffer
ID to provide a proper buffer instead. These were mostly unit tests
and testing programs, with a few places that passed a never-empty
optional through to the SourceFile constructor.
Then, remove optionality from the representation and accessors. It is
now the case that every SourceFile has a buffer ID, simplying a bunch
of code.
Some requirement machine work
Rename requirement to Value
Rename more things to Value
Fix integer checking for requirement
some docs and parser changes
Minor fixes