The __lldb_expr modules are special as in they are autogenerated by LLDB and meant to not be user-accessible, so showing them adds visual noise for no user benefit
I am open to the notion of adding a flag to swift-demangle to the same effect, but that seems much lower priority
Swift SVN r28195
Keep track of a second set of "direct method reference" curry thunks that don't end in a dynamic dispatch in order to properly implement a partial application such as 'let foo = super.foo'. Fixes rdar://problem/20598526.
Swift SVN r27538
The deallocating parameter convention is a new convention put on a
non-trivial parameter if the caller function guarantees to the callee
that the parameter has the deallocating bit set in its object header.
This means that retains and releases do not need to be emitted on these
parameters even though they are non-trivial. This helps to solve a bug
in +0 self and makes it trivial for the optimizer to perform
optimizations based on this property.
It is not emitted yet by SILGen and will only be put on the self
argument of Deallocator functions.
Swift SVN r26179
This lets us disambiguate the symbols for static and instance properties, and enables us to eventually leave the useless "self" type mangling out of method symbols. Fixes rdar://19012022 and dupes thereof, including crasher #1341.
Swift SVN r25111
If a subclass overrides methods with variance in the optionality of non-class-type members, emit a thunk to handle wrapping more optional parameters or results and force-unwrapping any IUO parameters made non-optional in the derived. For this to be useful, we need IRGen to finally pay attention to SILVTables, but this is a step on the way to fixing rdar://problem/19321484.
Swift SVN r24705
To get this to work, delay some "cleanup" work in the
demangler. For example, we now preserve in the tree
whether something was mangled as an allocating
initializer, and we only special-case the class vs.
non-class cases in the pretty printer.
Also fixes a number of remangling bugs, of course.
Swift SVN r24534
demangling tree back into a mangled string.
Also, extend the demangling API in a few obvious
ways, and simplify testing for failure in the
node-returning APIs by having them simply return
null instead of a spurious Failure node.
Also, preserve slightly more information in the
demangling tree. The goal here is eventually to
always allow a perfect round-trip through the
demangler parse tree. This patch gets us close,
but we're not quite there yet.
Tests to follow.
Swift SVN r24473
Changing the design of this to maintain more local context
information and changing the lookup API.
This reverts commit 4f2ff1819064dc61c20e31c7c308ae6b3e6615d0.
Swift SVN r24432
rdar://problem/18295292
Locally scoped type declarations were previously not serialized into the
module, which meant that the debugger couldn't reason about the
structure of instances of those types.
Introduce a new mangling for local types:
[file basename MD5][counter][identifier]
This allows the demangle node's data to be used directly for lookup
without having to backtrack in the debugger.
Local decls are now serialized into a LOCAL_TYPE_DECLS table in the
module, which acts as the backing hash table for looking up
[file basename MD5][counter][identifier] -> DeclID mappings.
New tests:
* swift-ide-test mode for testing the demangle/lookup/mangle lifecycle
of a module that contains local decls
* mangling
* module merging with local decls
Swift SVN r24426
a non-native owner. This is required by Slice, which
will use an ObjC immutable array object as the owner
as long as all the elements are contiguous.
As part of this, I decided it was best to encode the
native requirement in the accessor names. This makes
some of these accessors really long; we can revisit this
if we productize this feature.
Note that pinning addressors still require a native
owner, since pinning as a feature is specific to swift
refcounting.
Swift SVN r24420
Change all the existing addressors to the unsafe variant.
Update the addressor mangling to include the variant.
The addressor and mutable-addressor may be any of the
variants, independent of the choice for the other.
SILGen and code synthesis for the new variants is still
untested.
Swift SVN r24387
use a thin function type.
We still need thin-function-to-RawPointer conversions
for generic code, but that's fixable with some sort of
partial_apply_thin_recoverable instruction.
Swift SVN r24364
Teach IRGen and the runtime about the extra inhabitants
of function pointers, and take advantage of that in
thin and thick function types.
Also add runtime entrypoints for thin function type
metadata.
Swift SVN r24346
I am starting to reuse manglings for different passes. I want to make sure that
when we reuse functions we actually get a function created by the same pass.
Swift SVN r23924
Now all SIL function specialization passes use the new mangling infrastructure.
Lets keep it that way for future passes as well. = ).
Implements:
<rdar://problem/18831609>
Fixes:
<rdar://problem/19065735>
<rdar://problem/18906781>
<rdar://problem/18956916>
Swift SVN r23859
This is apart of creating the infrastructure for creating special manglings for
all of the passes that we specialize. The main motiviations for this
infrastructure is:
1. Create an easy method with examples on how to create these manglings.
2. Support multiple specializations. This is important once we allow for partial
specialization and can already occur if we perform function signature
optimizations on specialized functions.
The overall scheme is as follows:
_TTS<MANGLINGINFO>__<FUNCNAME>
Thus if we specialize twice, the first specialization will just be treated as
the function name for the second specialization.
<MANGLINGINFO> is defined as:
_<SPECIALIZATIONKINDID>_<SPECIALIZATIONUNIQUEINFO>
Where specialization kind is an enum that specifies the specific sort of
specialization we are performing and specialization unique info is enough
information to ensure that the identity of the function is appropriately
preserved.
Swift SVN r23801
Also handles mangling, demangling, printing and parsing.
This is the first patch to use global getter for "let" globals.
rdar://16614767
Swift SVN r23106
This is a type that has ownership of a reference while allowing access to the
spare bits inside the pointer, but which can also safely hold an ObjC tagged pointer
reference (with no spare bits of course). It additionally blesses one
Foundation-coordinated bit with the meaning of "has swift refcounting" in order
to get a faster short-circuit to native refcounting. It supports the following
builtin operations:
- Builtin.castToBridgeObject<T>(ref: T, bits: Builtin.Word) ->
Builtin.BridgeObject
Creates a BridgeObject that contains the bitwise-OR of the bit patterns of
"ref" and "bits". It is the user's responsibility to ensure "bits" doesn't
interfere with the reference identity of the resulting value. In other words,
it is undefined behavior unless:
castReferenceFromBridgeObject(castToBridgeObject(ref, bits)) === ref
This means "bits" must be zero if "ref" is a tagged pointer. If "ref" is a real
object pointer, "bits" must not have any non-spare bits set (unless they're
already set in the pointer value). The native discriminator bit may only be set
if the object is Swift-refcounted.
- Builtin.castReferenceFromBridgeObject<T>(bo: Builtin.BridgeObject) -> T
Extracts the reference from a BridgeObject.
- Builtin.castBitPatternFromBridgeObject(bo: Builtin.BridgeObject) -> Builtin.Word
Presents the bit pattern of a BridgeObject as a Word.
BridgeObject's bits are set up as follows on the various platforms:
i386, armv7:
No ObjC tagged pointers
Swift native refcounting flag bit: 0x0000_0001
Other available spare bits: 0x0000_0002
x86_64:
Reserved for ObjC tagged pointers: 0x8000_0000_0000_0001
Swift native refcounting flag bit: 0x0000_0000_0000_0002
Other available spare bits: 0x7F00_0000_0000_0004
arm64:
Reserved for ObjC tagged pointers: 0x8000_0000_0000_0000
Swift native refcounting flag bit: 0x4000_0000_0000_0000
Other available spare bits: 0x3F00_0000_0000_0007
TODO: BridgeObject doesn't present any extra inhabitants. It ought to at least provide null as an extra inhabitant for Optional.
Swift SVN r22880
Note that the demangling for 'a' accessors changes from
'addressor' to 'mutableAddressor'. This is correct for
the existing use-case of global variables, which permit
modification through the result.
Swift SVN r22254
They may be backreferenced by contexts nested inside the generic context, namely closures. Fixes the remainder of rdar://problem/18306777.
Swift SVN r22041
We currently mangle private declarations exactly like public declarations,
which means that private entities with the same name and same type will
have the same symbol even if defined in separate files.
This commit introduces a new mangling production, private-decl-name, which
includes a discriminator string to identify the file a decl came from.
Actually producing a unique string has not yet been implemented, nor
serialization, nor lookup using such a discriminator.
Part of rdar://problem/17632175.
Swift SVN r21598
If a method is defined within an extension of a class or struct that is
defined in a different module, we mangle the module where the extension is
defined.
If we define function f in module A, and redefine it again in an extension in
module B, we use different mangling to prevent linking in the wrong
SILFunction.
rdar://18057875
Swift SVN r21488
initializeBufferWithTakeOfBuffer value witness.
Attempt to use initializeBufferWithTakeOfBuffer in
some appropriate places.
There are some changes enabled by this which are
coming in a follow-up patch.
Swift SVN r20741
functions, and make those functions memoize the result.
This memoization can be both threadsafe and extremely
fast because of the memory ordering rules of the platforms
we're targeting: x86 is very permissive, and ARM has a
very convenient address-dependence rule which happens to
exactly match the semantics we need.
Swift SVN r20381