introduce a common superclass, SILNode.
This is in preparation for allowing instructions to have multiple
results. It is also a somewhat more elegant representation for
instructions that have zero results. Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction. Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.
A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.
Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
* Mention utils/python_lint.py in docs/ContinuousIntegration.md
* Improve error messages in utils/python_lint.py
* Make python_lint.py fail if required modules are not found
Previously, it returned 0 in such a case, which is considered as a
successful exit.
* Continue returning success when missing modules [python_lint.py]
Reverts ffd3b7832f
Rather than use the `INCLUDE` and `LIB` environment variables to build
the Windows code, use the `UniversalCRTSdkDir`, `UCRTVersion`, and
`VCToolsInstallDir` variables. Using these we can compute the right set
of include directories and library search paths for the various
architectures. This will enable us to build multiple variants of the
Windows stdlib at the same time.
Additionally, rather than relying on the magic environment variables to
be processed by the driver, pass them explicitly to the driver through
the build system. This also is needed to allow parallel builds of
various architecture variants of the stdlib on Windows.
This commit contains:
-) adding the new instructions + infrastructure, like parsing, printing, etc.
-) support in IRGen to generate global object-variables (i.e. "heap" objects) which are statically initialized in the data section.
-) IRGen for global_value which lazily initializes the object header and returns a reference to the object.
For details see the documentation of the new instructions in SIL.rst.
Static initializers are now represented by a list of literal and aggregate instructions in a SILGlobalVariable.
For details see SIL.rst.
This representation is cleaner than what we did so far (point to the initializer function and do some pattern matching).
One implication of that change is that now (a subset of) instructions not necessarily have a parent function.
Regarding the generated code it's a NFC.
Also the swift module format didn't change because so far we don't serializer global variables.
Remove the cast consumption kind from all unconditional casts. It
doesn't make sense for unconditional casts, complicates SIL ownership,
and wasn't fully supported for all variants. Copies should be
explicit.
Similarly to Clang, the flag enables coverage instrumentation, and links
`libLLVMFuzzer.a` to the produced binary.
Additionally, this change affects the driver logic, and enables the
concurrent usage of multiple sanitizers.