... using an inline namespace as the parent of the outermost
declaration(s) that have private or fileprivate accessability. Once
LLDB supports this we can retire the existing hack of storing it as a
fake command line argument.
rdar://problem/18296829
Use the "override" information in associated type declarations to provide
AST-level access to the associated type "anchor", i.e., the canonical
associated type that will be used in generic signatures, mangling,
etc.
In the Generic Signature Builder, only build potential archetypes for
associated types that are anchors, which reduces the number of
potential archetypes we build when type-checking the standard library
by 14% and type-checking time for the standard library by 16%.
There's a minor regression here in some generic signatures that were
accidentally getting (correct) same-type constraints. There were
existing bugs in this area already (Huon found some of them), while
will be addressed as a follow-up.
Fies SR-5726, where we were failing to type-check due to missed
associated type constraints.
When an associated type declaration “overrides” (restates) an associated
type from a protocol it inherits, note that it overrides that declaration.
SourceKit now reports overrides of associated types.
... using an inline namespace as the parent of the outermost
declaration(s) that have private or fileprivate accessability. Once
LLDB supports this we can retire the existing hack of storing it as a
fake command line argument.
rdar://problem/18296829
When type-checking a function or subscript that itself does not have generic
parameters (but is within a generic context), we were creating a generic
signature builder which will always produce the same generic signature as
the enclosing context. Stop creating that generic signature builder.
Instead, teach the CompleteGenericTypeResolver to use the generic signature
+ the canonical generic signature builder for that signature to resolve
types, which also eliminates some extraneous re-type-checking.
Improves type-checking performance of the standard library by 36%.
When type-checking a function or subscript that itself does not have generic
parameters (but is within a generic context), we were creating a generic
signature builder which will always produce the same generic signature as
the enclosing context. Stop creating that generic signature builder.
Instead, teach the CompleteGenericTypeResolver to use the generic signature
+ the canonical generic signature builder for that signature to resolve
types, which also eliminates some extraneous re-type-checking.
Improves type-checking performance of the standard library by 36%.
Previously we stored this inside each default argument
initializer context. This was overkill, because it is
the same for all default arguments in a single function,
and also insufficient, because initializer contexts are
not serialized and thus not available in SILGen when
the function is in a different module.
Instead store it directly inside the function and
serialize it.
NFC for now, since SILGen isn't using this yet.
The base mutability of storage is part of the signature, so be sure
to compute that during validation. Also, serialize it as part of
the storage declaration, and fix some places that synthesize
declarations to set it correctly.
The etymology of these terms isn't about race, but "black" = "blocked"
and "white" = "allowed" isn't really a good look these days. In most
cases we weren't using these terms particularly precisely anyway, so
the rephrasing is actually an improvement.
"Accessibility" has a different meaning for app developers, so we've
already deliberately excised it from our diagnostics in favor of terms
like "access control" and "access level". Do the same in the compiler
now that we aren't constantly pulling things into the release branch.
Rename AccessibilityAttr to AccessControlAttr and
SetterAccessibilityAttr to SetterAccessAttr, then track down the last
few uses of "accessibility" that don't have to do with
NSAccessibility. (I left the SourceKit XPC API alone because that's
supposed to be more stable.)
"Accessibility" has a different meaning for app developers, so we've
already deliberately excised it from our diagnostics in favor of terms
like "access control" and "access level". Do the same in the compiler
now that we aren't constantly pulling things into the release branch.
This commit changes the 'Accessibility' enum to be named 'AccessLevel'.
Pushes __consuming through the frontend and extends existing
attribute-based diagnsotics to cover it. Unlike `nonmutating`,
__consuming is allowed in class methods, though it makes little
sense to put it there.
To remove some callers of 'is<InOutType>' after Sema, start using what will soon be a structural invariant - the only expressions that can possibly have 'inout' type are semantically InOut expressions.
In anticipation of future attributes, and perhaps the ability to
declare lvalues with specifiers other than 'let' and 'var', expand
the "isLet" bit into a more general "specifier" field.
The outside representation already went to a flat set of requirements;
make the internal representation match so we aren't tempted to use the
requirement signature as inputs to a generic signature.
Rather than pretend that the requirement signature of a protocol is a
full, well-formed generic signature that one can meaningfully query,
treat it as a flat set of requirements. Nearly all clients already did
this, but make it official. NFC
Using the attribute in this position is a relic from the Swift 2
days, and fixing it required letting invalid code fall through to
Sema instead of being diagnosed in Parse proper. Treat 'var'
in this position like 'let' by simply offering to remove it
instead of extracting it into a separate variable.