We're no longer using this information for generic type parameters or
associated types, so there's no point in leaving this honeypot
around. Note that this information is redundant with what's in the
conformance lookup table already, so it will be going away soon.
Swift SVN r31334
The getConformsTo() callback was responsible for forcing the
collection of the requirements directly placed on an associated type,
which then get added to the archetype builder. This resulted in an
unhealthy dependency on the list of protocols attached to TypeDecl
(which should go away). Instead, retrieve the requirements from the
associated type's archetype (once it's been computed) or directly from
its list of "inherited" types (while we're building the generic
signature for the protocol itself).
Swift SVN r31332
- Disallow @objc on members of non-@objc protocols (the
real reason for this patch)
- Add a separate diagnostic for @objc appearing on members
in non-class, non-protocol types.
- Clean up the code that enforces that @objc can only be
applied to @objc-rooted classes. The diagnostic would
be incorrectly emitted for @objc subclasses of generic
classes.
Fixes <rdar://problem/17273524>.
Swift SVN r31303
This is a step toward weeding out the "getProtocols()" list on
TypeDecl. Now, use the Archetype's list of protocols for the set of
protocols to which the type parameter or associated type
conforms. Since that list is fully canonicalized, it's more generally
reliable. However, start serializing the list of inherited types for a
generic type parameter, so we can print it appropriately.
Swift SVN r31297
This reverts revision r30688. The patch needs more work, because it flags a
valid case as circular, see r15054, "Relax restriction on indirectly-self-
recursive protocol conformances. (rdar://problem/16306715)".
Swift SVN r30690
We have to check for cycles of length > 1 here. Also, add a bit to the
AssociatedTypeDecl to ensure the recursive requirement diagnostic is
only emitted once.
Fixes <rdar://problem/17986597>.
Swift SVN r30678
The defer body func is only ever fully applied, so SILGen can avoid allocating a closure for it if it's declared as a 'func', making it slightly more efficient at -Onone.
Swift SVN r30638
Otherwise, we end up with declarations with public access that do not
have public 'self' types. These declarations can then be used by other
modules, which may end up trying to access non-external symbols.
This closes a loophole currently in use by the standard library, so
the '_prext_ReverseIndexType' and '_ReverseCollectionType' protocols
become public for now. In order to keep the API impact minimized,
extensions involving these protocols now extend them directly, so that
all of the "private" stuff shows up in one place in the generated
interface. This is not a long-term solution, but it's no worse than
the rest of the underscore rules in the standard library.
rdar://problem/21380336 tracks relaxing access restrictions for protocol
conformances when the witnesses come from a different type, like a
protocol extension. This requires some SILGen work to do correctly.
Finishes rdar://problem/21559986
Swift SVN r30612
Generic subclasses of @objc classes are thus no longer @objc, but still
have implicitly @objc members.
Explicit @objc on generic classes or classes that inherit from @objc
classes is now forbidden with a diagnostic. Users need to know that
while they can override Objective-C methods and properties in such
a class, they cannot refer to the class by name from Objective-C code,
since it will not appear in the bridging header.
Fixes <rdar://problem/21342574>.
Swift SVN r30494
Otherwise the verifier can crash because hasType() returns true but
getType() gives us a MetatypeType that hits a null pointer in
desugaring.
The computeType() calls appear in a few too many places for my liking;
would be nice to clean this up further or replace everything with
interface types one day.
Fixes <rdar://problem/19606899>.
Swift SVN r30388
This changes the behavior to match NominalTypeDecls, which don't have a type
until everything is set up either. In a few places we construct TypeAliasDecls
from known types directly, and we have to call computeType().
Fixes <rdar://problem/19534837>.
Swift SVN r30386
In r26737, Sema was changed to not wrap Self occurring in a protocol
extension in a DynamicSelf. The commit message was rather terse but
I believe this is because the metadata for Self is bound to the static
base type, not the runtime base type.
However, we still need to substitute Self in the return type for the
static base type in the case where the base is an existential,
otherwise we get an open existential type leaking out.
Also remove the default argument for replaceCovariantResultType(),
every call site passed in a value and it seems bad to omit it on
accident.
Fixes <rdar://problem/21433694>.
Swift SVN r29802
Due to inreased use of llvm::make_range in LLVM headers and ADL for
types defined in the swift namespace, some of the LLVM headers started
to trigger ambiguity errors between llvm::make_range and
swift::make_range.
Swift SVN r29700
Rename existentialConformsToSelf() to existentialTypeSupported(). This
predicate is the "protocol has no Self or associated type requirements"
check, which is a looser condition than self-conformance. This was being
tested to see if the user could refer to the protocol via an existential
type.
The new existentialConformsToSelf() now checks for protocol being @objc,
and for the absence of static methods. This is used as part of the
argument type matching logic in matchType() to determine if the
existential can be bound to a generic type parameter.
The latter condition is stricter, for two reasons:
1) We allow binding existentials to multiple type parameters all sharing
the same generic type parameter T, so we don't want the user to be
able to see any static methods on T.
2) There is an IRGen limitation whereby only existentials without witness
tables can be passed in this manner.
Using the above, the representsNonTrivialGenericParameter() function
has been renamed to canBindGenericParamToExistential(). It now allows
an existential type to be bound to a generic type parameter only under
the following circumstances:
A) If the generic type parameter has no conformances, the match is allowed.
B) If the generic type parameter has at least one conformance, then all
of the conformances on the generic type parameter must be
existentialConformsToSelf() (condition 1 above), and all conformances
on the existential must be @objc (condition 2 above).
Fixes <rdar://problem/18378390> and <rdar://problem/18683843>, and lays
the groundwork for fixing a few other related issues.
Swift SVN r29337
initializer has been type-checked, rather than a bit for the entire
PatternBindingDecl.
<rdar://problem/21057425> Crash while compiling attached test-app.
Swift SVN r29049
Based on Dave’s hack, this allows one to define a “default implementation” as, e.g.,
protocol P {
func foo()
}
extension P {
final func foo() { … }
}
Swift SVN r28949
into account accesibility, assignments to self in a non-mutating
method (consistently), recursive components of an lvalue that makes it
non-settable, etc. Now we tell you what the *problem* was, instead of
just whining.
This fixes:
<rdar://problem/19370429> QoI: fixit to add "mutating" when assigning to a member of self in a struct
<rdar://problem/17632908> QoI: Modifying struct member in non-mutating function produces difficult to understand error message
in their full generality.
Swift SVN r28867
We were printing getter/setter names when the property came from
Objective-C initially, which is incorrect: we should print them when
the names differ from what Objective-C would compute by default. This
finishes rdar://problem/19408726, which was mostly in place a while
ago.
Swift SVN r28783
Fix a nullptr dereference when looking for a base expression
in a member access. Remove use of Optional<T*>, it wasn't providing
any value versus nullptr checking.
Swift SVN r28648
When in an initializer, we allow setting into immutable properties
provided that the type of base in `base.member` matches that of that
initializer's containing type. This was an approximation for allowing
full access into `self` during initialization but this doesn't work when
passing in a different struct of the same type because that struct
should be still be immutable.
Check whether the base of the member access is the implicit self
parameter of the initializer before allowing mutation.
rdar://problem/19814302
Swift SVN r28634
Now that we don't have generic parameter lists at arbitrary positions
within the extended type of an extension declaration, simplify the
representation of the extended type down to a TypeLoc along with a
(compiler-synthesized) generic parameter list.
On the parsing side, just parse a type for the extended type, rather
than having a special grammar. We still reject anything that is not a
nominal type (of course), but it's simpler just to call it a type.
As a drive-by, fix the crasher when extending a type with module
qualification, rdar://problem/20900870.
Swift SVN r28469
Modules occupy a weird space in the AST now: they can be treated like
types (Swift.Int), which is captured by ModuleType. They can be
treated like values for disambiguation (Swift.print), which is
captured by ModuleExpr. And we jump through hoops in various places to
store "either a module or a decl".
Start cleaning this up by transforming Module into ModuleDecl, a
TypeDecl that's implicitly created to describe a module. Subsequent
changes will start folding away the special cases (ModuleExpr ->
DeclRefExpr, name lookup results stop having a separate Module case,
etc.).
Note that the Module -> ModuleDecl typedef is there to limit the
changes needed. Much of this patch is actually dealing with the fact
that Module used to have Ctx and Name public members that now need to
be accessed via getASTContext() and getName(), respectively.
Swift SVN r28284
When reading the generic parameters of a constrained protocol
extension, cross-refencing an associated type would perform name
lookup into the protocol extension itself, causing fatal recursion
during deserialization. Fixed by avoiding additional deserialization
when looking for an associated type. Fixes rdar://problem/20812303.
Swift SVN r28228
Within the where clause of a constrained (protocol) extension, allow
us to find associated types of that protocol and anything it inherits
via unqualified lookup, e.g.,
extension SequenceType where Generator.Element : Equatable { }
rather than
extension SequenceType where Self.Generator.Element : Equatable { }
Implements rdar://problem/20722467.
Swift SVN r28208
Currently GenericSignature::getCanonicalSignature isn't able to canonicalize the set of requirements due to fragile dependencies on generic signatures matching AllArchetypes order of their originating GenericParamLists. However, we shouldn't let that stop us from getting the mangling right, so implement a "getCanonicalManglingSignature" that builds the true canonical signature by feeding it into an ArchetypeBuilder and shedding unnecessary constraints. For now, just handle conformance and base class constraints; still to do are same-type constraints.
Swift SVN r28191
There was a fair amount of code duplication in handling the various
places where @objc could either be explictly specified or be inferred;
centralize these in a new shouldMarkAsObjC() function. NFC
Swift SVN r28125
When deserializing a protocol, the conformance lookup table would not
contain entries for the inherited protocols of that protocol. They
were stashed in the "Protocols" array in TypeDecl (which will
eventually go away), but since there are no conformances for a
protocol, the conformance lookup table never got updated.
Nothing important seems to query this now; that will change soon.
Swift SVN r27967
Extensions cannot be uniquely cross-referenced, so cross-references to
extensions are serialized with the extended nominal type name and the
module in which the extension resides. This is not sufficient when
cross-referencing the generic type parameters of a constrained
protocol extension, because we don't know whether to get the
archetypes of the nominal type or some extension thereof. Serialize
the canonical generic signature so that we can pick an extension with
the same generic signature; it doesn't matter which we pick, so long
as we're consistent.
Fixes rdar://problem/20680169. Triggering this involves some
interesting interactions between the optimizer and standard library;
the standard library updates in the radar will test this.
Swift SVN r27825