Except GenericEnvironment.h, because you can't meaningfully use a
GenericEnvironment without its signature. Lots less depends on
GenericSignature.h now. NFC
introduce a common superclass, SILNode.
This is in preparation for allowing instructions to have multiple
results. It is also a somewhat more elegant representation for
instructions that have zero results. Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction. Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.
A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.
Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
Either the demangling completely succeeds or it fails. Don't demangle to something like: [...] with unmangled suffix "..."
This avoids getting really stupid demangled names for symbols which are actually not swift symbols.
Also, add a third [serializable] state for functions whose bodies we
*can* serialize, but only do so if they're referenced from another
serialized function.
This will be used for bodies synthesized for imported definitions,
such as init(rawValue:), etc, and various thunks, but for now this
change is NFC.
Previously it was part of swiftBasic.
The demangler library does not depend on llvm (except some header-only utilities like StringRef). Putting it into its own library makes sure that no llvm stuff will be linked into clients which use the demangler library.
This change also contains other refactoring, like moving demangler code into different files. This makes it easier to remove the old demangler from the runtime library when we switch to the new symbol mangling.
Also in this commit: remove some unused API functions from the demangler Context.
fixes rdar://problem/30503344
This was a remnant of the old generics implementation, where
all nested types were expanded into an AllArchetypes list.
For quite some time, this method no longer returned *all*
dependent types, only those with generic requirements on
them, and all if its remaining uses were a bit convoluted.
- In the generic specialization code, we used this to mangle
substitutions for generic parameters that are not subject
to a concrete same-type constraint.
A new GenericSignature::getSubstitutableParams()
function handles this use-case instead. It is similar
to getGenericParams(), but only returns generic parameters
which require substitution.
In the future, SubstitutionLists will only store replacement
types for these generic parameters, instead of the list of
types that we used to produce from getAllDependentTypes().
- In specialization mangling and speculative devirtualization,
we relied on SubstitutionLists having the same size and
order as getAllDependentTypes(). It's better to turn the
SubstitutionList into a SubstitutionMap instead, and do lookups
into the map.
- In the SIL parser, we were making a pass over the generic
requirements before looking at getAllDependentTypes();
enumeratePairedRequirements() gives the correct information
upfront.
- In SIL box serialization, we don't serialize the size of the
substitution list, since it's available from the generic
signature. Add a GenericSignature::getSubstitutionListSize()
method, but that will go away soon once SubstitionList
serialization only serializes replacement types for generic
parameters.
- A few remaining uses now call enumeratePairedRequirements()
directly.
This makes the demangler about 10 times faster.
It also changes the lifetimes of nodes. Previously nodes were reference-counted.
Now the returned demangle node-tree is owned by the Demangler class and it’s lifetime ends with the lifetime of the Demangler.
Therefore the old (and already deprecated) global functions demangleSymbolAsNode and demangleTypeAsNode are no longer available.
Another change is that the demangling for reflection now only supports the new mangling (which should be no problem because
we are generating only new mangled names for reflection).
It also uses the new mangling for type names in meta-data (except for top-level non-generic classes).
lldb has now support for new mangled metadata type names.
This reinstates commit 21ba292943.
For this we are linking the new re-mangler instead of the old one into the swift runtime library.
Also we are linking the new de-mangling into the swift runtime library.
It also switches to the new mangling for class names of generic swift classes in the metadata.
Note that for non-generic class we still have to use the old mangling, because the ObjC runtime in the OS depends on it (it de-mangles the class names).
But names of generic classes are not handled by the ObjC runtime anyway, so there should be no problem to change the mangling for those.
The reason for this change is that it avoids linking the old re-mangler into the runtime library.
Separate formal lowered types from SIL types.
The SIL type of an argument will depend on the SIL module's conventions.
The module conventions are determined by the SIL stage and LangOpts.
Almost NFC, but specialized manglings are broken incidentally as a result of
fixes to the way passes handle book-keeping of aruments. The mangler is fixed in
the subsequent commit.
Otherwise, NFC is intended, but quite possible do to rewriting the logic in many
places.
Names matter. When using an unsigned int to index arguments, always make it
clear what the index refers to. It is a particularly confusing in this code because:
- mangling should not care about argument indices at all, only the function type should matter.
- argument indices for a given function type may be different depending on the SIL stage.
- these indices are actually a contract between the client code and the mangler.
- the specialized function's argument indices are different than the original indices!
This issue was hiding bugs in the mangler. The bug fixes will be in a separate PR.
Following classes provide symbol mangling for specific purposes:
*) Mangler: the base mangler class, just providing some basic utilities
*) ASTMangler: for mangling AST declarations
*) SpecializationMangler: to be used in the optimizer for mangling specialized function names
*) IRGenMangler: mangling all kind of symbols in IRGen
All those classes are not used yet, so it’s basically a NFC.
Another change is that some demangler node types are added (either because they were missing or the new demangler needs them).
Those new nodes also need to be handled in the old demangler, but this should also be a NFC as those nodes are not created by the old demangler.
My plan is to keep the old and new mangling implementation in parallel for some time. After that we can remove the old mangler.
Currently the new implementation is scoped in the NewMangling namespace. This namespace should be renamed after the old mangler is removed.