Some of the free functions have method like names, so it is impossible to know
whether or not the given functions use the method convention or the thin
convention. At least now it is documented.
rdar://34222540
This mainly was just removing #if{,n}def in favor of SWIFT_CC_* macros. But I
did add a missing retain needed in swift_StructMirror_subscript since owner is
no longer passed at +1 and mirrors consume the owner.
rdar://34222540
clang is miscompiling some swiftcall functions on armv7s.
Stop using swiftcall in some places until it is fixed.
Reverts c5bf2ec (#13299).
rdar://35973477
If the value was wrapped in an existential buffer, we would never
release the original value even though it was passed in at +1.
Fixes <rdar://problem/36153982>, <https://bugs.swift.org/browse/SR-6536>.
This is a small code size win, and also gives us some abstraction so that future cooperative ObjC compilers/runtimes might be able to interoperate ObjC class objects with Swift type metadata efficiently than they currently are in the fragile Swift runtime.
While I'm here, I also noticed that swift_getObjCClassMetadata was unnecessarily getting exposed in non-ObjC-interop runtime builds, so I fixed that as well.
This just adjusts the printf specifier to use the standard defined
printf conversion specifier rather than assuming that %zd will convert
properly. NFC.
Adds the runtime implementation for copy-on-write existentials. This support is
enabled if SWIFT_RUNTIME_ENABLE_COW_EXISTENTIALS is defined. Focus is on
correctness -- not performance yet.
Don't use allocate/deallocate/projectBuffer witnesses for globals in cow
existential mode.
Use SWIFT_RUNTIME_ENABLE_COW_EXISTENTIALS configuration to set the default for
SILOptions.
This includes an IRGen fix to use the right projection in
emitMetatypeOfOpaqueExistential if SWIFT_RUNTIME_ENABLE_COW_EXISTENTIALS is set.
Use unknownRetain instead of native retain in dynamicCastToExistential.
Previously it was part of swiftBasic.
The demangler library does not depend on llvm (except some header-only utilities like StringRef). Putting it into its own library makes sure that no llvm stuff will be linked into clients which use the demangler library.
This change also contains other refactoring, like moving demangler code into different files. This makes it easier to remove the old demangler from the runtime library when we switch to the new symbol mangling.
Also in this commit: remove some unused API functions from the demangler Context.
fixes rdar://problem/30503344
Use the generic type lowering algorithm described in
"docs/CallingConvention.rst#physical-lowering" to map from IRGen's explosion
type to the type expected by the ABI.
Change IRGen to use the swift calling convention (swiftcc) for native swift
functions.
Use the 'swiftself' attribute on self parameters and for closures contexts.
Use the 'swifterror' parameter for swift error parameters.
Change functions in the runtime that are called as native swift functions to use
the swift calling convention.
rdar://19978563
For a value of an opaque generic type `<T> x: T`, the language currently defines `type(of: x)` and `T.self` as both producing a type `T.Type`, and the result of substituting an existential type by `T == P` gives `P.Protocol`, so the `type(of:)` operation on `x` can only give the concrete protocol metatype when `x` is an existential in this case. The optimizer understood this rule, but the runtime did not, causing SR-3304.
Correct behavior with resilience requires calling accessors instead
of using the metadata symbols directly.
For some reason this file gets linked in with SwiftRuntimeTests too,
so make the types @_versioned in the stdlib.
Fixes <rdar://problem/29213794>.
When getting a mirror child that is a class existential, there
may be witness tables for the protocol composition to copy. Don't
just take the address of a class instance pointer from the stack -
make a temporary existential-like before calling into the Mirror
constructor.
This now correctly covers reflecting weak optional class types, and weak
optional class existential types, along with fixing a stack buffer
overflow reported by the Address Sanitizer (thanks, ASan!).
Tests were also updated to check for the validity of the child's data.
rdar://problem/27348445
Heap boxes don't have a "class" metadata kind, so make
sure to release them when creating a new owner for loading
weak references in the runtime mirrors.
rdar://problem/27348445
for weak semantics, that is!
94a9c512b9 made some changes to loading
weak references by adding some information in the lower bits with
respect to locking. These bits need to be masked out when performing a
load, such as when we want to get the metadata pointer for a class
instance. This normally works fine when going through the normal weak
loading functions in the runtime.
When the runtime function swift_ClassMirror_subscript gets the offset of
one of its stored properties, it immediately packages it into the the
ad-hoc existential container, known as just `Mirror` in the runtime.
However, the weak reference isn't aligned! It has bit 1 set. We weren't
loading the weak reference here as we would during normal SILGen, such
as with a weak_load instruction. Simulate that here and make the
reference strong before putting it into the Mirror container, which also
clears those lower bits.
rdar://problem/27475034
There are still a couple of other cases to handle, namely the
unowned(safe) and unowned(unsafe) reference kinds. There may be other
places where an unaligned pointer is problematic in the runtime, which
we should audit for correctness.
rdar://problem/27809991