@preconcurrency imports disable Sendable checking, which can lead to
data races that undermine memory safety. Diagnose such imports, and
require `@safe(unchecked)` to suppress the diagnostic.
Under strict concurrency and memory safety, uses of `@unchecked
Sendable` conformances are considered unsafe. Diagnose the use sites,
not the declaration site.
A nonisolated(unsafe) declaration clearly indicates that the
declaration itself is unsafe, so it doesn't need to be diagnosted.
Instead, diagnose any reference to such a declaration that occurs
when strict concurrency is enabled. Make this a collatable unsafe use.
When a declaration is `@unsafe`, don't emit strict safety diagnostics
for uses of unsafe entities, constructs, or types within it. This
allows one to account for all unsafe behavior in a module using strict
memory safety by marking the appropriate declarations `@unsafe`.
Enhance the strict-safety diagnostics to suggest the addition of
`@unsafe` where it is needed to suppress them, with a Fix-It. Ensure
that all such diagnostics can be suppressed via `@unsafe` so it's
possible to get to the above state.
Also includes a drive-by bug fix where we weren't diagnosing unsafe
methods overriding safe ones in some cases.
Fixes rdar://139467327.
Find all the usages of `--enable-experimental-feature` or
`--enable-upcoming-feature` in the tests and replace some of the
`REQUIRES: asserts` to use `REQUIRES: swift-feature-Foo` instead, which
should correctly apply to depending on the asserts/noasserts mode of the
toolchain for each feature.
Remove some comments that talked about enabling asserts since they don't
apply anymore (but I might had miss some).
All this was done with an automated script, so some formatting weirdness
might happen, but I hope I fixed most of those.
There might be some tests that were `REQUIRES: asserts` that might run
in `noasserts` toolchains now. This will normally be because their
feature went from experimental to upcoming/base and the tests were not
updated.
Allow any declaration to be marked with `@unsafe`, meaning that it
involves unsafe code. This also extends to C declarations marked with
the `swift_attr("unsafe")` attribute.
Under a separate experimental flag (`DisallowUnsafe`), diagnose any
attempt to use an `@unsafe` declaration or any unsafe language feature
(such as `unowned(unsafe)`, `@unchecked Sendable`). This begins to
define a "safe" mode in Swift that prohibits memory-unsafe constructs.