In member ref expressions, if the base is optional, and the expected
expression result is either optional or unknown, suggest a fixit that
makes it into an optional chain expr rather than force unwrapping.
Since in many cases the actual fixit is emitted during diagnosis, and
thus, while type checking sub exprs with no contextual type specified
(so nothing to check for preferring optionality), we also need an
additional flag to pass down from FailureDiagnosis for whether we
prefer to fix as force unwrapping or optional chaining.
I attempted to do this same job via providing a convert type but
setting the ConvertTypeIsOnlyAHint flag on the type checker, but
unfortunately there are a lot of other moving parts that look at that
type, even if it is only supposed to be a hint, so an additional flag
to the CS ended up being cleaner.
Passing a function type to an @autoclosure param would always fail to
type check because of the attempt to decompose the parallel structure
of the two (both being functions). In this case, though, we don’t want
to do any such thing, we want to allow the ExprRewriter to explicitly
insert an AutoClosureExpr in coerceToType, as it would do with any
other non-function arg type.
We had four duplicated implementations of checking how a protocol
requirement uses 'Self', all slightly wrong or incomplete:
- When deciding if the protocol type can be used as an existential.
This one would just ignore 'Self' in the return type of a method
completely, which was incorrect for cases where 'Self' is
contravariant but part of the return value, for example:
func foo() -> (Self -> ())
- When deciding if a member access can be performed on an existential
value. This is distinct from the former, because the member may
have been defined in a protocol extension, in which case it cannot
be used even if the protocol type can be used as an existential.
Unfortunately, this implementation was overly conservative, and
would reject uses of 'Self' where Sema could in fact erase the
existential type, for example:
func foo() -> Self??
func foo() -> Self.Type
func foo() -> (Self, Self)
This function handled function return types correctly, effectively
plugging the leak in the previous code. It did lead to inconsistent
behavior with protocols that had contravariant Self in requirements
though; sometimes we would diagnose uses of the existential type,
other times we would only complain about specific members.
- When deciding if a method in a non-final class can model a protocol
requirement. This one was the most elaborate one, but here
contravariance and uses of associated types are actually okay, so
it was written to pick up covariant 'Self' only. However, it also
did not handle metatypes and tuples.
- When opening the type of member of an existential, we would check
if the return value was 'Self' or an optional of 'Self', but again
this check was too conservative, so after the previous three were
fixed, we could reference members on existentials that did not
have a correct opened type.
Now, these have been combined into one check. To fix some crashes,
Sema's implementation of erasing existentials now relies on
coerceToType() instead of hand-rolling a few coercions of its own,
and wrapping the rest in CovariantFunctionConversionExpr, which
didn't make much sense if the result was not a function type.
SILGen still does not support function type conversions where an
existential return value is being erased; these would silently
miscompile before, but crash with an assertion now, because they
are correctly modeled as a FunctionConversionExpr, and not
CovariantFunctionConversionExpr.
The issue here is that the constraint solver was deciding on
FixKind::RelabelCallTuple as the fix for the problem and emitting the
diagnostic, even though there were two different fixes possible.
CSDiags has the infrastructure to support doing doing the right thing
here, but is only being used for ApplyExprs, not SubscriptExprs.
The solution is to fix both problems: remove FixKind::RelabelCallTuple,
to let CSDiags handle the problem, and enhance CSDiags to treat
SubscriptExpr more commonly with ApplyExpr. This improves several cases
where the solver was picking one solution randomly and suggesting that
as a fix, instead of listing that there are multiple different solutions.
Not all types are l-valuable, notably InoutType's. This seems like a
weird restriction to put in the type checker, but it is the cleanest
solution to this. The better solution would be to change how
inoutexpr/inouttype are represented completely... maybe someday.
tested in the testsuite because they are generally already handled
by the CSDiags infrastructure. Remove them in prep for dismantling
the Failure infrastructure. NFC.
for initializer lookup, allowing it to produce more specific diagnostics
when referring to a private initializer that the compiler can see.
In addition to improving diagnostics, this allows us to eliminate the
NoPublicInitializers failure kind.
Was just reading through the code here and noticed that the result of
matchTypes() here is always the returned result from this function, so
might as well save code and confusion and return it directly.
When member lookup completely fails and when CSDiags is the one performing
the lookup, reissue another lookup that ignores access control. This allows
it to find inaccessible members and diagnose them as such, instead of pretending
we have no idea what the user wants. We now produce an error message like this:
main.swift:1:6: error: 'foo' is inaccessible due to 'private' protection level
C().foo()
^
test.swift:1:35: note: 'foo' declared here
internal class C { private func foo() {} }
^
instead of:
main.swift:1:2: error: value of type 'C' has no member 'foo'
C().foo()
^~~ ~~~
Parameters (to methods, initializers, accessors, subscripts, etc) have always been represented
as Pattern's (of a particular sort), stemming from an early design direction that was abandoned.
Being built on top of patterns leads to patterns being overly complicated (e.g. tuple patterns
have to have varargs and default parameters) and make working on parameter lists complicated
and error prone. This might have been ok in 2015, but there is no way we can live like this in
2016.
Instead of using Patterns, carve out a new ParameterList and Parameter type to represent all the
parameter specific stuff. This simplifies many things and allows a lot of simplifications.
Unfortunately, I wasn't able to do this very incrementally, so this is a huge patch. The good
news is that it erases a ton of code, and the technical debt that went with it. Ignoring test
suite changes, we have:
77 files changed, 2359 insertions(+), 3221 deletions(-)
This patch also makes a bunch of wierd things dead, but I'll sweep those out in follow-on
patches.
Fixes <rdar://problem/22846558> No code completions in Foo( when Foo has error type
Fixes <rdar://problem/24026538> Slight regression in generated header, which I filed to go with 3a23d75.
Fixes an overloading bug involving default arguments and curried functions (see the diff to
Constraints/diagnostics.swift, which we now correctly accept).
Fixes cases where problems with parameters would get emitted multiple times, e.g. in the
test/Parse/subscripting.swift testcase.
The source range for ParamDecl now includes its type, which permutes some of the IDE / SourceModel tests
(for the better, I think).
Eliminates the bogus "type annotation missing in pattern" error message when a type isn't
specified for a parameter (see test/decl/func/functions.swift).
This now consistently parenthesizes argument lists in function types, which leads to many diffs in the
SILGen tests among others.
This does break the "sibling indentation" test in SourceKit/CodeFormat/indent-sibling.swift, and
I haven't been able to figure it out. Given that this is experimental functionality anyway,
I'm just XFAILing the test for now. i'll look at it separately from this mongo diff.
In matchTypes(), we check whether a type variable representing an
argument could potentially be bound to a single param in a TupleType
rather than the whole TupleType, but this check has been pretty
heuristic and ad hoc so far. Replace with an explicit check to see if
it's possible for exactly one of the parameters in the tuple type can be
bound to a single unlabeled argument.
<rdar://problem/22913570>
mode (take 2)
Allow untyped placeholder to take arbitrary type, but default to Void.
Add _undefined<T>() function, which is like fatalError() but has
arbitrary return type. In playground mode, merely warn about outstanding
placeholders instead of erroring out, and transform placeholders into
calls to _undefined(). This way, code with outstanding placeholders will
only crash when it attempts to evaluate such placeholders.
When generating constraints for an iterated sequence of type T, emit
T convertible to $T1
$T1 conforms to SequenceType
instead of
T convertible to SequenceType
This ensures that an untyped placeholder in for-each sequence position
doesn't get inferred to have type SequenceType. (The conversion is still
necessary because the sequence may have IUO type.) The new constraint
system precipitates changes in CSSimplify and CSDiag, and ends up fixing
18741539 along the way.
(NOTE: There is a small regression in diagnosis of issues like the
following:
class C {}
class D: C {}
func f(a: [C]!) { for _: D in a {} }
It complains that [C]! doesn't conform to SequenceType when it should be
complaining that C is not convertible to D.)
<rdar://problem/21167372>
(Originally Swift SVN r31481)
Don't assert that generic arg lists have the same lengths. We don't
currently allow nested generics, but we try to type-check anyway, and
one of the effects is sticking the generic params for both the outer and
inner classes on the inner type. Instead, just error out.
<rdar://problem/21967211>