Again, since there's no distinction between an enum initializer that
delegates to 'self.init' from one that assigns to 'self', we can remove
the special handling of enum initializers in the 'root self' case.
Now, 'root self' is only used for designated initializers in classes
with no superclass, and struct initializers that perform memberwise
initialization of stored properties.
This regresses some diagnostics, because the logic for delegating
init diagnostics is missing some heuristics present in the root self
case. I will fix this in a subsequent patch.
Previously protocol extension initializers which called 'self.init' were
considered 'delegating', and ones that assign to 'self' were considered
'root'.
Both have the same SIL lowering so the distinction is not useful, and
removing it simplifies some code.
This replaces the '[volatile]' flag. Now, class_method and
super_method are only used for vtable dispatch.
The witness_method instruction is still overloaded for use
with both ObjC protocol requirements and Swift protocol
requirements; the next step is to make it only mean the
latter, also using objc_method for ObjC protocol calls.
introduce a common superclass, SILNode.
This is in preparation for allowing instructions to have multiple
results. It is also a somewhat more elegant representation for
instructions that have zero results. Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction. Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.
A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.
Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
This is a very easily misused API since it allows for users to leak instructions
if they are not careful. This commit removes this API and replaces the small
number of uses of this API with higher level APIs that accomplish the same task
without using removeFromParent(). There were no API users that specifically
required removeFromParent.
An example of one way we were using removeFromParent is to move a SILInstruction
to the front of a block. That does not require exposing an API like
removeFromParent()... we can just create a higher level API like the one added
in this commit: SILInstruction::moveFront(SILBasicBlock *).
rdar://31276565
With the introduction of special decl names, `Identifier getName()` on
`ValueDecl` will be removed and pushed down to nominal declarations
whose name is guaranteed not to be special. Prepare for this by calling
to `DeclBaseName getBaseName()` instead where appropriate.
Replace `NameOfType foo = dyn_cast<NameOfType>(bar)` with DRY version `auto foo = dyn_cast<NameOfType>(bar)`.
The DRY auto version is by far the dominant form already used in the repo, so this PR merely brings the exceptional cases (redundant repetition form) in line with the dominant form (auto form).
See the [C++ Core Guidelines](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#es11-use-auto-to-avoid-redundant-repetition-of-type-names) for a general discussion on why to use `auto` to avoid redundant repetition of type names.
There was no real code sharing going on here and instead due to the size of
ElementCollector made it difficult to ascertain without reading the code that
the two code paths are completely separate.
This is a NFC change internal to DIMemoryUseCollector that is not visible
outside of DI.
rdar://31521023
This is necessary since other passes rely on DIMemoryUseCollector.h and I want
to update each one of them individually to minimize disruption.
rdar://31521023
At some point, pass definitions were heavily macro-ized. Pass
descriptive names were added in two places. This is not only redundant
but a source of confusion. You could waste a lot of time grepping for
the wrong string. I removed all the getName() overrides which, at
around 90 passes, was a fairly significant amount of code bloat.
Any pass that we want to be able to invoke by name from a tool
(sil-opt) or pipeline plan *should* have unique type name, enum value,
commend-line string, and name string. I removed a comment about the
various inliner passes that contradicted that.
Side note: We should be consistent with the policy that a pass is
identified by its type. We have a couple passes, LICM and CSE, which
currently violate that convention.
When the DI lifetime checker diagnoses an `inout`-related error, it tries to examine the function you’re calling to emit its name in the error message. Unfortunately, it implicitly assumes that `ApplyExpr::getCalledValue()` will find a `ValueDecl` to return; if the `ApplyExpr` directly calls a closure, it won’t, and so `handleInOutUse` will try to `dyn_cast` a `nullptr`. This change adds a check to avoid that.
A lot of files transitively include Expr.h, because it was
included from SILInstruction.h, SILLocation.h and SILDeclRef.h.
However in reality most of these files don't do anything
with Exprs, especially not anything in IRGen or the SILOptimizer.
Now we're down to 171 files in the frontend which depend on
Expr.h, which is still a lot but much better than before.
Handling address_to_pointer as a plain inout missed some mutations and lead to miscompiles.
We now treat address_to_pointer as escaping address.
Fixes SR-3554
Changes:
* Terminate all namespaces with the correct closing comment.
* Make sure argument names in comments match the corresponding parameter name.
* Remove redundant get() calls on smart pointers.
* Prefer using "override" or "final" instead of "virtual". Remove "virtual" where appropriate.
This was made redundant by typed boxes, and the type operand was already removed from textual SIL, but the field was never removed from the instruction's in memory representation. It becomes wrong in the face of compound boxes with layout.
This was already done for getSuccessorBlocks() to distinguish getting successor
blocks from getting the full list of SILSuccessors via getSuccessors(). This
commit just makes all of the successor/predecessor code follow that naming
convention.
Some examples:
getSingleSuccessor() => getSingleSuccessorBlock().
isSuccessor() => isSuccessorBlock().
getPreds() => getPredecessorBlocks().
Really, IMO, we should consider renaming SILSuccessor to a more verbose name so
that it is clear that it is more of an internal detail of SILBasicBlock's
implementation rather than something that one should consider as apart of one's
mental model of the IR when one really wants to be thinking about predecessor
and successor blocks. But that is not what this commit is trying to change, it
is just trying to eliminate a bit of technical debt by making the naming
conventions here consistent.
Before this commit all code relating to handling arguments in SILBasicBlock had
somewhere in the name BB. This is redundant given that the class's name is
already SILBasicBlock. This commit drops those names.
Some examples:
getBBArg() => getArgument()
BBArgList => ArgumentList
bbarg_begin() => args_begin()
This eliminates all inline creation of SILBasicBlock via placement new.
There are a few reasons to do this:
1. A SILBasicBlock is always created with a parent function. This commit
formalizes this into the SILBasicBlock API by only allowing for SILFunctions to
create SILBasicBlocks. This is implemented via the type system by making all
SILBasicBlock constructors private. Since SILFunction is a friend of
SILBasicBlock, SILFunction can still create a SILBasicBlock without issue.
2. Since all SILBasicBlocks will be created in only a few functions, it becomes
very easy to determine using instruments the amount of memory being allocated
for SILBasicBlocks by simply inverting the call tree in Allocations.
With LTO+PGO, normal inlining can occur if profitable so there shouldn't be
overhead that we care about in shipping compilers.
Today, loads and stores are treated as having @unowned(unsafe) ownership
semantics. This leaves the user to specify ownership changes on the loaded or
stored value independently of the load/store by inserting ARC operations. With
the change to Semantic SIL, this will no longer be true. Instead loads, stores
have ownership semantics that one must reason about such as copy, take, and
trivial.
This change moves us closer to that world by eliminating the default
OwnershipQualification argument from create{Load,Store}. This means that the
compiler developer cannot ignore reasoning about the ownership semantics of the
memory operation that they are creating.
Operationally, this is a NFC change since I have just gone through the compiler
and updated all places where we create loads, stores to pass in the former
default argument ({Load,Store}OwnershipQualifier::Unqualified), to
SILBuilder::create{Load,Store}(...). For now, one can just do that in situations
where one needs to create loads/stores, but over time, I am going to tighten the
semantics up via the verifier.
rdar://28685236
This is just old code that needs to be updated given changes in DebugInfo and
this should be a NFC change.
I am going to use this so that I can test a specific test case where DI emits
different errors depending on use-list ordering.
rdar://28851920
Extend the checks in `LifetimeChecker` in
`SILOptimizer/Mandatory/DefiniteInitialization.cpp`
to catch when the memory object corresponding to a let constant is used
as an inout parameter in a protocol witness method.
Initializing a let constant separate from its declaration requires write
access. Therefore it is treated as `@lvalue TestProtocol` in the AST for
a certain scope.
Checking that the constant is not written to after being initialized is
supposed to happen in the Mandatory SILOptimizer phase instead.
On loads, the Optimizer checks, that a variable is fully initialized,
but perviously did not validate what happens to it after it is loaded.
This allowed loading the memory object through an open_existential_addr
instruction and applying the result as an Operand to a mutating witness
method.