Extend function type metadata with an entry for the thrown error type,
so that thrown error types are represented at runtime as well. Note
that this required the introduction of "extended" function type
flags into function type metadata, because we would have used the last
bit. Do so, and define one extended flag bit as representing typed
throws.
Add `swift_getExtendedFunctionTypeMetadata` to the runtime to build
function types that have the extended flags and a thrown error type.
Teach IR generation to call this function to form the metadata, when
appropriate.
Introduce all of the runtime mangling/demangling support needed for
thrown error types.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
Section scans (for metadata, protocols, etc.) can be costly. This change adds tracing calls to those scans so we can more easily see how much time is spent in these scans and where they're initiated.
This adds an os_signpost implementation controlled by SWIFT_STDLIB_TRACING, and a default empty implementation for when that's disabled.
rdar://110266743
This adds a bunch of new code but once I finish refactoring the other
demangling stuff, I should be able to remove
- gatherWrittenGenericArgs()
- _gatherGenericParameters()
- SubstGenericParametersFromWrittenArgs
Return a NULL demangle tree instead of crashing. When an unconditional
runtime cast fails, it's going to crash anyways, but this way it prints
a better description (though not great) than the unreachable's message here.
Implement casting to and from extended existentials. This is done by slightly generalizing the conditional conformances checking infrastructure.
Unfortunately, casts for reference types and metatypes are unsound because IRGen is peepholing all non-opaque existential conversions with a helper. I’ll disable that in a follow-up.
rdar://92197049
Isolated parameters are part of function types. Encode them in function
type manglings and metadata, and ensure that they round-trip through
the various mangling and metadata facilities. This nails down the ABI
for isolated parameters.
Implement name mangling, type metadata, runtime demangling, etc. for
global-actor qualified function types. Ensure that the manglings
round-trip through the various subsystems.
Implements rdar://78269642.
Repurpose mangling operator `Y` as an umbrella operator that covers new attributes on function types. Free up operators `J`, `j`, and `k`.
```
async ::= 'Ya' // 'async' annotation on function types
sendable ::= 'Yb' // @Sendable on function types
throws ::= 'K' // 'throws' annotation on function types
differentiable ::= 'Yjf' // @differentiable(_forward) on function type
differentiable ::= 'Yjr' // @differentiable(reverse) on function type
differentiable ::= 'Yjd' // @differentiable on function type
differentiable ::= 'Yjl' // @differentiable(_linear) on function type
```
Resolves rdar://76299796.
`@noDerivative` was not mangled in function types, and was resolved incorrectly when there's an ownership specifier. It is fixed by this patch with the following changes:
* Add `NoDerivative` demangle node represented by a `k` operator.
```
list-type ::= type identifier? 'k'? 'z'? 'h'? 'n'? 'd'? // type with optional label, '@noDerivative', inout convention, shared convention, owned convention, and variadic specifier
```
* Fix `NoDerivative`'s overflown offset in `ParameterTypeFlags` (`7` -> `6`).
* In type decoder and type resolver where attributed type nodes are processed, add support for nested attributed nodes, e.g. `inout @noDerivative T`.
* Add `TypeResolverContext::InoutFunctionInput` so that when we resolve an `inout @noDerivative T` parameter, the `@noDerivative T` checking logic won't get a `TypeResolverContext::None` set by the caller.
Resolves rdar://75916833.
* Move differentiability kinds from target function type metadata to trailing objects so that we don't exhaust all remaining bits of function type metadata.
* Differentiability kind is now stored in a tail-allocated word when function type flags say it's differentiable, located immediately after the normal function type metadata's contents (with proper alignment in between).
* Add new runtime function `swift_getFunctionTypeMetadataDifferentiable` which handles differentiable function types.
* Fix mangling of different differentiability kinds in function types. Mangle it like `ConcurrentFunctionType` so that we can drop special cases for escaping functions.
```
function-signature ::= params-type params-type async? sendable? throws? differentiable? // results and parameters
...
differentiable ::= 'jf' // @differentiable(_forward) on function type
differentiable ::= 'jr' // @differentiable(reverse) on function type
differentiable ::= 'jd' // @differentiable on function type
differentiable ::= 'jl' // @differentiable(_linear) on function type
```
Resolves rdar://75240064.
Introduce `@concurrent` attribute on function types, including:
* Parsing as a type attribute
* (De-/re-/)mangling for concurrent function types
* Implicit conversion from @concurrent to non-@concurrent
- (De-)serialization for concurrent function types
- AST printing and dumping support
Add `async` to the type system. `async` can be written as part of a
function type or function declaration, following the parameter list, e.g.,
func doSomeWork() async { ... }
`async` functions are distinct from non-`async` functions and there
are no conversions amongst them. At present, `async` functions do not
*do* anything, but this commit fully supports them as a distinct kind
of function throughout:
* Parsing of `async`
* AST representation of `async` in declarations and types
* Syntactic type representation of `async`
* (De-/re-)mangling of function types involving 'async'
* Runtime type representation and reconstruction of function types
involving `async`.
* Dynamic casting restrictions for `async` function types
* (De-)serialization of `async` function types
* Disabling overriding, witness matching, and conversions with
differing `async`
This cleans up some more `llvm::` leakage in the runtime when built into
a static library. With this change we are down to 3 leaking symbols in
the static library related to a missed ADT (`StringSwitch`).
To allow more pervasive use of TypeRefs in LLDB, we need a way to build mangled
names from TypeRef pointers to allow round-tripping between TypeRefs and AST
types. The goal is to experiment with making lldb::CompilerType backed by
TypeRefs instead of AST types.
<rdar://problem/55412775>
This makes for a cleaner and less implicit-context-heavy API, and makes it easier for symbolic
reference resolvers to do context-dependent things (like map the in-memory base address back to a
remote address in MetadataReader).
This dramatically reduces the number of needed malloc calls.
Unfortunately I had to add the implementation of SmallVectorBase::grow_pod to the runtime, as we don't link LLVM. This is a bad hack, but better than re-inventing a new SmallVector implementation.
SR-10028
rdar://problem/48575729
This is done by disallowing nodes with children to also have index or text payloads.
In some cases those payloads were not needed anyway, because the information can be derived later.
In other cases the fix was to insert an additional child node with the index/text payload.
Also, implement single or double children as "inline" children, which avoids needing a separate node vector for children.
All this reduces the needed size for node trees by over 2x.
Anonymous context descriptors were being treated as non-generic by
IRGen, which lead to problems for (file)private types within generic
types. Emit generic parameters and requirements for anonymous contexts
as well.
The runtime was mostly prepared for this, and the ABI already
accounted for it, so the runtime change is minor---it only affected
building a demangle tree from metadata.
Fixes rdar://problem/46853806.
While declaration mangling now does the right thing for parameter lists,
the function type mangling unfortunately still models the parameter list
as a single tuple node.
Change the runtime's behavior to match the AST mangler, which wraps
a single tuple-typed parameter in a tuple node, so that we can produce
different mangling trees for function types taking multiple arguments
versus a single tuple argument.
When mapping from type metadata to a demangle tree, fill in the complete
set of generic arguments. Most of the effort here is in dealing with
extensions that involve same-type constraints on a generic parameter, e.g.,
extension Array where String == Element { }
extension Dictionary where Key == Value { }
In such cases, the metadata won’t contain generic arguments for every
generic parameter. Rather, the generic arguments for non-key generic
parameters will need to be computed based on the same-type requirements
of the context. Do so, and eliminate the old hacks that put the generic
arguments on the innermost type. We don’t need them any more.
Part of rdar://problem/37170296.
The token contents doesn't really matter, but it can't start with a digit if it's going to show up in mangled names using identifier grammar. `s/0x/$/` for some 80s flair.
- Instead of keeping multiple flags in the type descriptor flags,
just keep a single flag indicating the presence of additional
import information after the name.
- That import information consists of a sequence of null-terminated
C strings, terminated by an empty string (i.e. by a double null
terminator), each prefixed with a character describing its purpose.
- In addition to the symbol namespace and related entity name,
include the ABI name if it differs from the user-facing name of the
type, and make the name the user-facing Swift name.
There's a remaining issue here that isn't great: we don't correctly
represent the parent relationship between error types and their codes,
and instead we just use the Clang module as the parent. But I'll
leave that for a later commit.
Rather than storing a mangled name in a Swift protocol descriptor,
which encodes information that is redundant with the context of the
protocol, store an unmangled name as in nominal type descriptors. Update
the various places where this name is used to extract the demangle
tree from the context descriptors.
Use ProtocolDescriptorRefs within the runtime representation of
existential type metadata (TargetExistentialTypeMetadata) instead of
bare protocol descriptor pointers. Start rolling out the use of
ProtocolDescriptorRef in a few places in the runtime that touch this
code. Note that we’re not yet establishing any strong invariants on
the TargetProtocolDescriptorRef instances.
While here, replace TargetExistentialTypeMetadata’s hand-rolled pointer
arithmetic with swift::ABI::TrailingObjects and centralize knowledge of
its layout better.
Clang-importer-synthesized declarations get an extra tag character included in their mangling, which was not being preserved in type context descriptors. This caused runtime lookup for these synthesized types to fail. Fix this by adding the tag information to type context descriptors and teaching the runtime to match it up when fetching metadata by mangled name. Fixes rdar://problem/40878715.
We want to be able to potentially introduce new metadata kinds in future Swift compilers, so a runtime ought to be able to degrade gracefully in the face of metadata kinds it doesn't know about. Remove attempts to exhaustively switch over metadata kinds and instead treat unknown metadata kinds as opaque.
Now that every foreign type has a type context descriptor, we can use that for a uniquing key instead of a dedicated mangled string, saving some code size especially in code that makes heavy use of imported types. rdar://problem/37537241