From a user's perspective, one imports Clang modules using the normal
Swift syntax for module imports, e.g.,
import Cocoa
However, to enable importing Clang modules, one needs to point Swift
at a particular SDK with the -sdk= argument, e.g.,
swift -sdk=/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.9M.sdk
and, of course, that SDK needs to provide support for modules.
There are a number of moving parts here. The major pieces are:
CMake support for linking Clang into Swift: CMake users will now need
to set the SWIFT_PATH_TO_CLANG_SOURCE and SWIFT_PATH_TO_CLANG_BUILD
to the locations of the Clang source tree (which defaults to
tools/clang under your LLVM source tree) and the Clang build tree.
Makefile support for linking Clang into Swift: Makefile users will
need to have Clang located in tools/clang and Swift located in
tools/swift, and builds should just work.
Module loader abstraction: similar to Clang's module loader,
a module loader is responsible for resolving a module name to an
actual module, loading that module in the process. It will also be
responsible for performing name lookup into that module.
Clang importer: the only implementation of the module loader
abstraction, the importer creates a Clang compiler instance capable of
building and loading Clang modules. The approach we take here is to
parse a dummy .m file in Objective-C ARC mode with modules enabled,
but never tear down that compilation unit. Then, when we get a request
to import a Clang module, we turn that into a module-load request to
Clang's module loader, which will build an appropriate module
on-the-fly or used a cached module file.
Note that name lookup into Clang modules is not yet
implemented. That's the next major step.
Swift SVN r3199
a reliable way to track whether a particular type has been
validated. Instead, add some bits to the type to indicate which stage
of checking it has received. I hate it, but it works and I don't know
of a better way to ensure that types get validated. This subsystem
will need to get rearchitected at some point (ugh).
Reduce the number of places where we build new BoundGenericTypes,
since they need to be validated fully to get substitutions, and then
introduces a number of validateTypeSimple() calls to validate types in
places where we know the validation will succeed, but we need that
information regardless.
Swift SVN r2681
member of a oneof/struct/class/extension to support types nested
within generic classes, e.g., Vector<Int>.ElementRange.
Most importantly, nominal types are no longer inherently canonical. A
nominal type refers to both a particular nominal type declaration as
well as its parent, which may be non-canonical and will vary. For
example, the variance in the parent makes Vector<Int>.ElementRange and
Vector<Float>.ElementRange different types.
Introduce deduction and substitution for nominal types. Deduction is
particular interesting because we actually do allow deduction of T
when comparing X<T>.Inner and X<Int>.Inner, because (unlike C++) there
is no specialization to thwart us.
Swift SVN r2507
polymorphic type when that type is nested within a generic type. The
type-checker still isn't ready to use these declarations in a sane way.
Swift SVN r2501
protocol Document { var title : String }
protocol Versioning { func bumpVersion() }
protocol VersionedDocument : Document, Versioning { }
This commit covers the basic functionality of protocol inheritance, including:
- Parsing & AST representation
- Conforming to a protocol also requires conforming to its inherited
protocols
- Member lookup into a protocol also looks into its inherited
protocols (results are aggregated; there is no name hiding)
- Teach ErasureExpr to maintain lvalueness, so we don't end up
performing a silly load/erase/materialize dance when accessing
members from an inherited protocol.
Swift SVN r1804