IRGen type conversion is invariant with respect to archetypes with the same set of constraints, so instead of redundantly generating a TypeInfo object and IR type for Optional<T> for every T everywhere, key TypeInfo objects using an "exemplar type" that we form using a folding set to collapse together archetypes with the same class-ness, superclass constraint, and protocol constraints.
This is a nice memory and IR size optimization, but will be essential for correctness when lowering interface types, because there is no unique context to ground a dependent type, and we need to lower the same generic parameter with the same context requirements to the same type whenever we instantiate it in order for the IR to type-check.
In this revision, we profile the nested archetypes of each recursively, which I neglected to take into account originally in r12112, causing failures when archetypes that differed by associated type constraints were incorrectly collapsed.
Swift SVN r12116
IRGen type conversion is invariant with respect to archetypes with the same set of constraints, so instead of redundantly generating a TypeInfo object and IR type for Optional<T> for every T everywhere, key TypeInfo objects using an "exemplar type" that we form using a folding set to collapse together archetypes with the same class-ness, superclass constraint, and protocol constraints.
This is a nice memory and IR size optimization, but will be essential for correctness when lowering interface types, because there is no unique context to ground a dependent type, and we need to lower the same generic parameter with the same context requirements to the same type whenever we instantiate it in order for the IR to type-check.
Swift SVN r12112
In general, this forces SILGen and IRGen code that's grabbing
a declaration to state whether it's doing so to define it.
Change SIL serialization to serialize the linkage of functions
and global variables, which means also serializing declarations.
Change the deserializer to use this stored linkage, even when
only deserializing a declaration, and to call a callback to
inform the client that it has deserialized a new entity.
Take advantage of that callback in the linking pass to alter
the deserialized linkage as appropriate for the fact that we
imported the declaration. This computation should really take
advantage of the relationship between modules, but currently
it does not.
Swift SVN r12090
The current implementation of dealloc_stack in IR-gen is a
no-op, but that's very much wrong for types with non-trivial
local allocation requirements, e.g. archetypes. So we need
to be able to do non-trivial code here. However, that means
modeling both the buffer pointer and the allocated address
in SIL.
To make this more type-safe, introduce a SIL-specific
'[local_storage] T' type that represents the required
allocation for locally storing a T. alloc_stack now returns
one of those in additon to a *T, and dealloc_stack expects
the former.
IR-gen still implements dealloc_stack as a no-op, but
that's now easy to fix.
Swift SVN r6937
their types.
- DebugTypeInfo holds all type info we need to emit debug information.
- Type info is limited to name, location, and storage size.
- As a side-effect: verbose LLVM IR allocas in debug builds!
Swift SVN r5980
For most types, this is really only useful in the presence of
an unimplemented operation, but for empty types this does come
up quite reasonably.
Swift SVN r4897
handling non-fixed layouts.
This uncovered a bug where we weren't rounding up the header
size to the element alignment when allocating an array of archetypes.
Writing up a detailed test case for *that* revealed that we were
never initializing the length field of heap arrays. Fixing that
caused a bunch of tests to crash trying to release stuff. So...
I've left this in a workaround state right now because I have to
catch a plane.
Swift SVN r4804
Set up IRGen to emit SIL code that uses top-level-code global variables. Add -sil-i to a bunch of Interpreter tests that use global variables.
Swift SVN r4480
Implement SIL-to-IR lowering for allocation, deallocation, load, store, and branching instructions so that local variables and branching control flow can be used. Add a Fibonacci loop test to exercise the new instructions.
Swift SVN r3767
The test changes are that we're setting a class body on
some types that we weren't before. For some of these,
this is okay; for others, it's more questionable, but
ultimately not *harmful*.
Swift SVN r3746
Mangling is still a hack, pending a better type AST. Fixed
a bug where arguments passed indirectly were not being destroyed
by the callee (when passed by value). Changed some of the protocol
signatures to use the generic opaque pointer type, making the
types a bit more self-documenting in the IR.
Swift SVN r2274
match the actual entrypoints vended by the runtime:
1) there is no swift_slowRawAlloc
2) swift_deallocObject takes two arguments
Also, make all calls to swift_allocObject go through a common
function so that we can easily use optimized entrypoints if the
runtime provides them.
Swift SVN r1993