alloc_ref_dynamic allocates an instance of a class type based on the
value in its metatype operand. Start emitting these instructions for
the allocating constructor of a complete object initializer (not yet
tested) and for the allocating constructor synthesized for an imported
Objective-C init method.
Still missing:
- IRGen still does the same thing as alloc_ref right now. That
change will follow.
- There are devirtualization opportunities when we know the value of
the metatype that would turn an alloc_ref_dynamic into an alloc_ref;
I'm not planning to do this optimization.
Swift SVN r14560
It's not forming the metatype for the protocol type (exists t: P. t).metatype, it's forming the existential of a metatype of a conforming type, exists t: P. (t.metatype).
Swift SVN r14520
Having one instruction to get the dynamic metatype of a (non-existential) value makes more sense from a generic specialization standpoint and should stave off inevitable crashers when archetype_metatypes get specialized. protocol_metatype remains separate because metatype existentials are more interesting.
Swift SVN r14499
We were wantonly applying 'upcast' to archetypes in some cases, and really, that's OK, since these instructions do the same thing (and generic specialization could turn archetype_ref_to_super into upcast). Make everyone's life easier by folding archetype_to_super into upcast. Fixes <rdar://problem/16192324>.
Swift SVN r14496
Introduce basic bridging support for class metatypes as
arguments/parameters. Note that we don't yet bridge 'self' for a class
method, which is the more interesting case; that will follow.
Swift SVN r14123
Introduce the SIL instructions thick_to_objc_metatype and
objc_to_thick_metatype to convert between the 'thick' and
'Objective-C' representations of a metatype. Most of this code is
trivial support code for these conversions: printing, parsing,
(de-)serialization, etc., for which testing will come online in
subsequent patches or is incidental in other tests.
Lower Objective-C metatype values down to objc_class* at the IR level
and implement IRGen support for these SIL instructions. SIL-only test
case at the moment because SILGen never creates these instructions.
Swift SVN r14087
Force @objc_blocks to use the @cc(cdecl) calling convention, so that calling them undergoes bridging conversions in SILGen, and give them the correct ownership conventions so that the callee, arguments, and result are passed +0. This unfortunately ruins our ability to verify bridge_to_block instructions at all, but bridge_to_block is a hack anyway, and this is a necessary prerequisite to actually being able to call blocks in IRGen.
Swift SVN r13923
Riding off of project_existential[_ref] was convenient, but the
resuls are used quite differently. Note that open_existential[_ref]
still don't print/parse reasonably yet.
Swift SVN r13878
Introduce a new expression kind, OpenExistentialExpr, that "opens" up
an existential value into a value of a fresh archetype type that
represents the dynamic type of the existential. That value can be
referenced (via an OpaqueValueExpr) within the within the
subexpression of OpenExistentialExpr. For example, a call to a
DynamicSelf method on an existential looks something like this:
(open_existential_expr implicit type='P'
(opaque_value_expr implicit type='opened P' @ 0x7fd95207c290
unique)
(load_expr implicit type='P'
(declref_expr type='@lvalue P' decl=t.(file).func
decl.p@t.swift:5:37 specialized=no))
(erasure_expr implicit type='P'
(call_expr type='opened P'
(archetype_member_ref_expr type='() -> opened P'
decl=t.(file).P.f@t.swift:2:8 [with Self=opened P]
(opaque_value_expr implicit type='opened P' @
0x7fd95207c290 unique))
(tuple_expr type='()')))))
Note that we're using archetype_member_ref_expr rather than
existential_member_ref_expr, because the call is operating on the
opaque_value_expr of archetype type. The outer erasure turns the
archetype value back into an existential value.
The SILGen side of this is somewhat incomplete; we're using
project_existential[_ref] to open the existential, which is almost
correct: it gives us access to the value as an archetype, but IRGen
doesn't know to treat the archetype type as a fresh archetype whose
conformances come from the existential. Additionally, the output of
the opened type is not properly parsable. I'll fix this in follow-on
commits.
Finally, the type checker very narrowly introduces support for
OpenExistentialExpr as it pertains to DynamicSelf. However, this can
generalize to support all accesses into existentials, eliminating the
need for ExistentialMemberRef and ExistentialSubscript in the AST and
protocol_method in SIL, as well as enabling more advanced existential
features should we want them later.
Swift SVN r13740
Edge SILFunction one step closer to independence from SILFunctionType context by taking the generic param list as a separate constructor parameter, and serializing those params alongside the function record. For now we still pass in the context params from the SILFunctionType in most cases, because the logic for finding the generic params tends to be entangled in type lowering, but this pushes the problem up a step.
Thanks Jordan for helping work out the serialization changes needed.
Compared to r13036, this version of the patch includes the decls_block RecordKind enumerators for the GENERIC_PARAM_LIST layouts in the sil_block RecordKind enumerator, as Jordan had suggested before. r13036 caused buildbot failures when building for iOS, but I am unable to reproduce those failures locally now.
Swift SVN r13485
It's OK to clone shared definitions, and we need to in order to carry non-inlined specializations with the transparent functions that reference them.
Swift SVN r13288
Introduce a new AST node to capture the covariant function type
conversion for DynamicSelf. This conversion differs from the normal
function-conversion expressions because it isn't inherently type-safe;
type safety is assured through DynamicSelf.
On the SIL side, map DynamicSelf down to the type of the declaring
class to keep the SIL type system consistent. Map the new
CovariantFunctionConversionExpr down to a convert_function
instruction, slightly loosening the constraints on convert_function to
allow for this (it's always been ABI-compatible-only conversions
anyway).
We currently generate awful SIL when calling a DynamicSelf method,
because SILGenApply doesn't know how to deal with the implicit return
type adjustment associated with the covariant function
conversion. That optimization will follow; at least what we have here
is (barely) functional.
Swift SVN r13286
Introduce a new AST node to capture the covariant function type
conversion for DynamicSelf. This conversion differs from the normal
function-conversion expressions because it isn't inherently type-safe;
type safety is assured through DynamicSelf.
On the SIL side, map DynamicSelf down to the type of the declaring
class to keep the SIL type system consistent. Map the new
CovariantFunctionConversionExpr down to a convert_function
instruction, slightly loosening the constraints on convert_function to
allow for this (it's always been ABI-compatible-only conversions
anyway).
We currently generate awful SIL when calling a DynamicSelf method,
because SILGenApply doesn't know how to deal with the implicit return
type adjustment associated with the covariant function
conversion. That optimization will follow; at least what we have here
is (barely) functional.
Swift SVN r13269
Edge SILFunction one step closer to independence from SILFunctionType context by taking the generic param list as a separate constructor parameter, and serializing those params alongside the function record. For now we still pass in the context params from the SILFunctionType in most cases, because the logic for finding the generic params tends to be entangled in type lowering, but this pushes the problem up a step.
Thanks Jordan for helping work out the serialization changes needed.
Swift SVN r13036
When applying getInheritedConformance to a specialized conformance, reapply the specialization to the found inherited conformance so we get a conformance for the same type we put in, making the specializer's job easier when finding conformances to insert into archetype_methods. To expose the problems this fixes, add a check in the SIL verifier that ArchetypeMethodInsts carry a ProtocolConformance that actually matches their lookup type.
Swift SVN r12988
with two kinds, and some more specific predicates that clients can use.
The notion of 'computed or not' isn't specific enough for how properties
are accessed. We already have problems with ObjC properties that are
stored but usually accessed through getters and setters, and a bool here
isn't helping matters.
NFC.
Swift SVN r12593
Lower types for SILDeclRefs from the interface types of their referents, dragging the old type along for the ride so we can still offer the context to clients that haven't been weaned off of it. Make SILFunctionType's interface types and generic signature independent arguments of its Derive the context types of SILFunctionType from the interface types, instead of the other way around. Do a bunch of annoying inseparable work in the AST and IRGen to accommodate the switchover.
Swift SVN r12536
We need to model the difference between Objective-C- and Swift-rooted
class hierarchies in SIL. IRGen is too late to handle nil returns.
This reverts commit 549db981ea0136a67aee3029aefe18a05d3c8833.
Swift SVN r12400
No functional difference from the unconditional checked downcast we
had before, but this gives IRGen the chance to specialize the
implementation.
Swift SVN r12382
Teach SILGen to emit a -dealloc method that runs user code, destroys
instance variables, and then calls up to the superclass dealloc. Teach
IRGen to deal with Objective-C destructor methods and add -dealloc to
the instance method table.
There are a few things still wrong here: we're emitting both a Swift
destructor and -dealloc, even though only one of them should ever
actually be used. Additionally, instance variables shouldn't be
destroyed in -dealloc, but in .cxx_destruct, so they persist until the
last of the -dealloc methods is invoked.
Swift SVN r12115
In general, this forces SILGen and IRGen code that's grabbing
a declaration to state whether it's doing so to define it.
Change SIL serialization to serialize the linkage of functions
and global variables, which means also serializing declarations.
Change the deserializer to use this stored linkage, even when
only deserializing a declaration, and to call a callback to
inform the client that it has deserialized a new entity.
Take advantage of that callback in the linking pass to alter
the deserialized linkage as appropriate for the fact that we
imported the declaration. This computation should really take
advantage of the relationship between modules, but currently
it does not.
Swift SVN r12090
In nongeneric contexts, or contexts where we only care about the indirectness of parameters or have already substituted the generic parameters for a function, the interface types are interchangeable, so just switch over.
Swift SVN r12044
Split 'destructive_switch_enum_addr' into separate 'switch_enum_addr' and 'take_enum_data_addr' instructions. This should unblock some optimization work we would like to do with enums.
Swift SVN r12015
Emphasize the fact that this address is only intended for initialization. When we split destructive_switch_enum_addr, there will be another similar instruction for destructively taking the payload out of an already-initialized enum.
Swift SVN r12000
Introduce the SIL instruction peer_method, which references a method
in the given class or one of its superclasses (but not a subclass). It
IRGen's to objc_msgSendSuper[Stret] (vs. super_method IRGen'ing to
objc_msgSendSuper[Stret]2 for superclass lookup).
Use peer_method for initializer delegation to a foreign initializer
(i.e., an init-family method written in Objective-C) to close the
safety loophole introduced by initializer delegation in r11965. The
loophole still exists, but can only be triggered from Objective-C.
Teach definite initialization that peer_method really isn't a use of
self.
Swift SVN r11992
Treat the interface types of SILFunctionTypes as the canonical representation in the verifier. Do a bunch of supporting and annoyingly irreducible work to enable this:
- Stop trying to uncurry generic parameter lists during type lowering and preserve the structure of AST GenericParamLists. This makes mapping dependent types into contexts easier.
- Properly walk generic parameter lists at all depths when grooming substitution vectors for use with substGenericArgs interfaces.
- Reseat the generic parameter lists created for protocol_method results so that we don't expect the outer Self archetype to be unbound; it's provided by the extra data of the result.
- Hack SILFunctionType serialization never to use a decl reference when serializing its generic param list. When this happens, we get incorrect archetypes. This is a gross hack, but when we're able to jump all the way to interface types, it can go away.
Putting these ducks in a row nicely un-XFAILs TextFormatting.swift.
Swift SVN r11989
We should be able to cut out another layer of IRGen grime now.
This does XFAIL one test, test/Prototypes/TextFormatting.swift, which fails because of a weird archetype ordering in a nested substitution list. This should get sorted out by switching to interface types, so I'm going to let it go until then.
Swift SVN r11618
These still can't ever take any extra polymorphic params without breaking the calling convention, so protocol_method still needs to produce a thin value in SIL, and we have to ensure we don't add any extra polymorphic params in the IR signature.
Swift SVN r11594
I'd like to treat protocol_method equivalently to archetype_method, but we don't have a way to "open" the implicit type variable inside the existential, so protocol_method still needs to produce a "thick" witness_method reference with the Self polymorphic binding partially applied. We can at least simplify the SIL model by saying that its result is always thick, and let the lowering of @cc(witness_method) @thick in IRGen work out how thick that actually has to be for the given function type, instead of reflecting all the special cases in SIL.
Swift SVN r11330
Clear up the last bit of wanton implicit behavior in archetype_method by having it return the witness as a thin function generic on <Self: P>. Applying the result with <Self = T> will then naturally provide the polymorphic context parameters required by the witness. Tweak the implementation of SILFunctionType::substGenericArgs to handle a substitution for the Self archetype.
Swift SVN r11316
Remove the initialize_var instruction now that DI fully diagnoses initialization problems. Change String-to-NSString bridging to explicitly invoke String's default constructor; it was the last remaining user of initialize_var. Remove dead code to emit an implicit default constructor without a body.
Swift SVN r11066
Allow archetype_method to look up a witness from a concrete ProtocolConformance record. This will allow generic specialization to apply to constrained generic functions independent of archetype_method devirtualization. <rdar://problem/14748543>
Swift SVN r10950
They will always return a thin function with the appropriate witness CC. The metadata pointer, if any, will be passed as part of the witness CC lowering.
Swift SVN r10923
We will generate these in SILGen when we see a NormalProtocolConformance, to provide a mapping of method requirements to witnesses for types.
Swift SVN r10900
This completes the FileUnit refactoring. A module consists of multiple
FileUnits, which provide decls from various file-like sources. I say
"file-like" because the Builtin module is implemented with a single
BuiltinUnit, and imported Clang modules are just a single FileUnit source
within a module.
Most modules, therefore, contain a single file unit; only the main module
will contain multiple source files (and eventually partial AST files).
The term "translation unit" has been scrubbed from the project. To refer
to the context of declarations outside of any other declarations, use
"top-level" or "module scope". To refer to a .swift file or its DeclContext,
use "source file". To refer to a single unit of compilation, use "module",
since the model is that an entire module will be compiled with a single
driver call. (It will still be possible to compile a single source file
through the direct-to-frontend interface, but only in the context of the
whole module.)
Swift SVN r10837
a FuncDecl. This makes it much more straight-forward for SIL passes to
introduce a new one - without doing name lookup in the builtin module!
Swift SVN r10694