This allows to move many SIL APIs and utilities, which require a context, to the SIL module.
The SIL-part of SwiftPassInvocation is extracted into a base class SILContext which now lives in SIL.
Also: simplify the begin/end-pass functions of the SwiftPassInvocation.
We are going to need to add more flags to the various checked cast
instructions. Generalize the CastingIsolatedConformances bit in all of
these SIL instructions to an "options" struct that's easier to extend.
Precursor to rdar://152335805.
It derives the address of the first element of a vector, i.e. a `Builtin.FixedArray`, from the address of the vector itself.
Addresses of other vector elements can then be derived with `index_addr`.
When performing a dynamic cast to an existential type that satisfies
(Metatype)Sendable, it is unsafe to allow isolated conformances of any
kind to satisfy protocol requirements for the existential. Identify
these cases and mark the corresponding cast instructions with a new flag,
`[prohibit_isolated_conformances]` that will be used to indicate to the
runtime that isolated conformances need to be rejected.
* factor out common methods of AST Type/CanonicalType into a `TypeProperties` protocol.
* add more APIs to AST Type/CanoncialType.
* move `MetatypeRepresentation` from SIL.Type to AST.Type and implement it with a swift enum.
* let `Builder.createMetatype` get a CanonicalType as instance type, because the instance type must not be a lowered type.
Some utilities, like Builder.insert(after:) pass a Builder object that
represents an insertion point. That insertion point is sometimes needed to
determine which instructions to create (endApply vs. abortApply). But there is
no way to recover the insertion point. We don't want to simply return an
instruction, because that could be interpreted in different ways. Instead we
provide insertion block, but only in those situations where it makes sense and can't
be used incorrectly.
As the optimizer uses more and more AST stuff, it's now time to create an "AST" module.
Initially it defines following AST datastructures:
* declarations: `Decl` + derived classes
* `Conformance`
* `SubstitutionMap`
* `Type` and `CanonicalType`
Some of those were already defined in the SIL module and are now moved to the AST module.
This change also cleans up a few things:
* proper definition of `NominalTypeDecl`-related APIs in `SIL.Type`
* rename `ProtocolConformance` to `Conformance`
* use `AST.Type`/`AST.CanonicalType` instead of `BridgedASTType` in SIL and the Optimizer
This makes ManagedBuffer available and usable in Embedded Swift, by:
- Removing an internal consistency check from ManagedBuffer that relies on metatypes.
- Making the .create() API transparent (to hoist the metatype to the callee).
- Adding a AllocRefDynamicInst simplification to convert `alloc_ref_dynamic` to `alloc_ref`, which removes a metatype use.
- Adding tests for the above.
The OSSA elimination pass has not yet been moved below all high level
function passes. Until that work has been completed the Autodiff
closure-spec optimization pass cannot solely support OSSA instructions.
In preparation for inserting mark_dependence instructions for lifetime
dependencies early, immediately after SILGen. That will simplify the
implementation of borrowed arguments.
Marking them unresolved is needed to make OSSA verification
conservative until lifetime dependence diagnostics runs.
Optionally, the dependency to the initialization of the global can be specified with a dependency token `depends_on <token>`.
This is usually a `builtin "once"` which calls the initializer for the global variable.
The dependent 'value' may be marked 'nonescaping', which guarantees that the
lifetime dependence is statically enforceable. In this case, the compiler
must be able to follow all values forwarded from the dependent 'value', and
recognize all final (non-forwarded, non-escaping) use points. This implies
that `findPointerEscape` is false. A diagnostic pass checks that the
incoming SIL to verify that these use points are all initially within the
'base' lifetime. Regular 'mark_dependence' semantics ensure that
optimizations cannot violate the lifetime dependence after diagnostics.
* `alloc_vector`: allocates an uninitialized vector of elements on the stack or in a statically initialized global
* `vector`: creates an initialized vector in a statically initialized global
Introduce two modes of bridging:
* inline mode: this is basically how it worked so far. Using full C++ interop which allows bridging functions to be inlined.
* pure mode: bridging functions are not inlined but compiled in a cpp file. This allows to reduce the C++ interop requirements to a minimum. No std/llvm/swift headers are imported.
This change requires a major refactoring of bridging sources. The implementation of bridging functions go to two separate files: SILBridgingImpl.h and OptimizerBridgingImpl.h.
Depending on the mode, those files are either included in the corresponding header files (inline mode), or included in the c++ file (pure mode).
The mode can be selected with the BRIDGING_MODE cmake variable. By default it is set to the inline mode (= existing behavior). The pure mode is only selected in certain configurations to work around C++ interop issues:
* In debug builds, to workaround a problem with LLDB's `po` command (rdar://115770255).
* On windows to workaround a build problem.
This instructions marks the point where all let-fields of a class are initialized.
This is important to ensure the correctness of ``ref_element_addr [immutable]`` for let-fields,
because in the initializer of a class, its let-fields are not immutable, yet.
Codegen is the same, but `begin_dealloc_ref` consumes the operand and produces a new SSA value.
This cleanly splits the liferange to the region before and within the destructor of a class.
`ownership` is a bad name in `LoadInst`, because it hides `Value.ownership`.
Therefore rename it to `loadOwnership`.
Do the same for ownership in StoreInst to be consistent.