This is very brittle in this first iteration. For now we require the
declaration representing the availability domain be deserialized before it can
be looked up by name since Clang does not have a lookup table for availabilty
domains in its module representation. As a result, it only works for bridging
headers that are not precompiled.
Part of rdar://138441266.
This commit removes the guardrails in ImportDecl.cpp:SwiftDeclConverter
that prevent it from importing non-public C++ members. It also
accordingly adjusts all code that assumes generated Swift decls should
be public. This commit does not import non-public inherited members;
that needs its own follow-up patch.
Note that Swift enforces stricter invariants about access levels than C++.
For instance, public typealiases cannot be assigned private underlying types,
and public functions cannot take or return private types. Meanwhile,
both of these patterns are supported in C++, where exposing private types
from a class's public interface is considered feature. As far as I am aware,
Swift was already importing such private-containing public decls from C++
already, but I added a test suite, access inversion, that checks and
documents this scenario, to ensure that it doesn't trip any assertions.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
The macro name resolution in the source lookup cache was only looking at
macros in the current module, meaning that any names introduced by peer
or declaration macros declared in one module but used in another would
not be found by name lookup.
Switch the source lookup cache over to using the same
`forEachPotentialResolvedMacro` API that is used by lookup within
types, so we have consistent name-lookup-level macro resolution in both
places.
... except that would be horribly cyclic, of course, so introduce name
lookup flags to ignore top-level declarations introduced by macro
expansions. This is semantically correct because macro expansions are
not allowed to introduce new macros anyway, because that would have
been a terrible idea.
Fixes rdar://107321469. Peer and declaration macros at module scope
should work a whole lot better now.
Add a private discriminator to the mangling of an outermost-private `MacroExpansionDecl` so that declaration macros in different files won't have colliding macro expansion buffer names.
rdar://107462515
To help consolidate our various types describing imports, this commit moves the following types and methods to Import.h:
* ImplicitImports
* ImplicitStdlibKind
* ImplicitImportInfo
* ModuleDecl::ImportedModule
* ModuleDecl::OrderImportedModules (as ImportedModule::Order)
* ModuleDecl::removeDuplicateImports() (as ImportedModule::removeDuplicates())
* SourceFile::ImportFlags
* SourceFile::ImportOptions
* SourceFile::ImportedModuleDesc
This commit is large and intentionally kept mechanical—nothing interesting to see here.
Most of AST, Parse, and Sema deal with FileUnits regularly, but SIL
and IRGen certainly don't. Split FileUnit out into its own header to
cut down on recompilation times when something changes.
No functionality change.
Removes duplicated logic from the implementations of
FileUnit::lookupValue, and simplifies the interface to
ModuleDecl::lookupValue, where everyone was passing an empty
(non-filtering) access path anyway /except/ during actual lookup from
source code. No functionality change.
We already do this for other ASTContext-allocated types (see
Decl.cpp). This will prevent the sort of mistakes in the previous two
commits.
Note that if any particular subclass of FileUnit wants to have its
destructor run, it can opt into that manually using
ASTContext::addDestructorCleanup. SourceFile and BuiltinUnit both do
this. But we generally don't /want/ to do this if we can avoid it
because it adds to compiler teardown time.
Way back in Swift 1 I was trying to draw a distinction between
"overlays", separate libraries that added Swift content to an existing
Objective-C framework, and "the Swift part of a mixed-source
framework", even though they're implemented in almost exactly the same
way. "Adapter module" was the term that covered both of those. In
practice, however, no one knew what "adapter" meant. Bring an end to
this confusion by just using "overlay" within the compiler even for
the mixed-source framework case.
No intended functionality change.
It's a pretty obscure feature (and one we wish we didn't need), but
sometimes API is initially exposed through one module in order to
build another one, and we want the canonical presented name to be
something else. Push this concept into Swift's AST properly so that
other parts of the compiler stop having to know that this is a
Clang-specific special case.
No functionality change in this commit; will be used in the next
commit.
The loading of additional modules by Sema may trigger an out-of-date
PCM rebuild in the Clang module dependencies of the additional
module. A PCM rebuild causes the ModuleManager to unload previously
loaded ASTFiles. For this reason we must use the cached ASTFile
information here instead of the potentially dangling pointer to the
ASTFile that is stored in the clang::Module object.
This fixes a crash in IRGenDebugInfo when generation DIModule context
chains.
rdar://problem/47600180
NormalProtocolConformance::isRetroactive() introduces dependency on swiftClangImporter by calling ClangModuleUnit::getAdapterModule().
Do some refactoring to break the cycle.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
This reverts commit bb16ee049d,
reversing changes made to a8d831f5f5.
It's not sufficient to solve the problem, and the choices were to do
something more complicated, or just take a simple brute force
approach. We're going with the latter.
ModuleDecl::forAllVisibleModules() now has a includeLinkOnlyModules
parameter. This is intended to be used when computing the set of
libraries to autolink.
This avoids having to bring in all members (and extensions!) for an
outer type just to look up a nested type. In the test case attached
(reduced from the project in SR-5284), this actually led to a circular
dependency between deserialization and the importer, which resulted in
a compiler crash.
This is not a new problem, but it's more important with the release of
Swift 4, where a number of Apple SDK types are now newly imported as
member types. (The one in the original bug was
NSView.AutoresizingMask, formerly NSAutoresizingMaskOptions.) Since we
always use the Swift 4 name for cross-references, this affected
everyone, even those still compiling in Swift 3 mode.
https://bugs.swift.org/browse/SR-5284
The typedef `swift::Module` was a temporary solution that allowed
`swift::Module` to be renamed to `swift::ModuleDecl` without requiring
every single callsite to be modified.
Modify all the callsites, and get rid of the typedef.
Introduce Fix-Its to aid migration from selectors spelled as string
literals ("foo:bar:", which is deprecated), as well as from
construction of Selector instances from string literals
(Selector("foo:bar"), which is still acceptable but not recommended),
to the #selector syntax. Jump through some hoops to disambiguate
method references if there are overloads:
fixits.swift:51:7: warning: use of string literal for Objective-C
selectors is deprecated; use '#selector' instead
_ = "overloadedWithInt:" as Selector
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#selector(Bar.overloaded(_:) as (Bar) -> (Int) -> ())
In the cases where we cannot provide a Fix-It to a #selector
expression, we wrap the string literal in a Selector(...) construction
to suppress the deprecation warning. These are also easily searchable
in the code base.
This also means we're doing more validation of the string literals
that go into Selector, i.e., that they are well-formed selectors and
that we know about some method that is @objc and has that
selector. We'll warn if either is untrue.
This is a hack.
We currently don't put anything in Clang submodules; they're just wrappers
to track what is and isn't visible. All lookups happen through the top-
level module.
This commit adds a new API getImportedModulesForLookup, which is ONLY used
by top-level name lookup and forAllVisibleModules. It is identical to
getImportedModules for everything but ClangModuleUnits, which instead
compute and cache a list of their transitively imported top-level modules.
This speeds up building Foundation.swiftmodule with a release compiler by
a bit more than 5%, and makes a previously lookup-bound test case compile
a third faster than before.
This is a hack.
rdar://problem/20813240
Swift SVN r28598
Modules occupy a weird space in the AST now: they can be treated like
types (Swift.Int), which is captured by ModuleType. They can be
treated like values for disambiguation (Swift.print), which is
captured by ModuleExpr. And we jump through hoops in various places to
store "either a module or a decl".
Start cleaning this up by transforming Module into ModuleDecl, a
TypeDecl that's implicitly created to describe a module. Subsequent
changes will start folding away the special cases (ModuleExpr ->
DeclRefExpr, name lookup results stop having a separate Module case,
etc.).
Note that the Module -> ModuleDecl typedef is there to limit the
changes needed. Much of this patch is actually dealing with the fact
that Module used to have Ctx and Name public members that now need to
be accessed via getASTContext() and getName(), respectively.
Swift SVN r28284
This is useful both for caching purposes and for comparison of discriminators
(something the debugger will need to do when looking up a particular decl).
No observable functionality change.
Swift SVN r21610
We currently mangle private declarations exactly like public declarations,
which means that private entities with the same name and same type will
have the same symbol even if defined in separate files.
This commit introduces a new mangling production, private-decl-name, which
includes a discriminator string to identify the file a decl came from.
Actually producing a unique string has not yet been implemented, nor
serialization, nor lookup using such a discriminator.
Part of rdar://problem/17632175.
Swift SVN r21598
This is necessary to handle Swift code using API defined in Objective-C
that itself uses classes defined in Swift. Protocols coming next.
First half of <rdar://problem/16296027>
Swift SVN r14984
In Sema, give derived '==' definitions the module's DerivedFileUnit as their decl context instead of the more general Module, and give it a backreference to the nominal type for which it was derived.
In SILGen, visit the derived global decls associated with Clang-imported enums, and give them shared linkage. Part of fixing <rdar://problem/16264703>.
Swift SVN r14875
Make the name lookup interfaces all take DeclNames instead of identifiers, and update the lookup caches of the various file units to index their members by both compound name and simple name. Serialized modules are keyed by identifiers, so as a transitional hack, do simple name lookup then filter the results by compound name.
Swift SVN r14768