This is a value operation that can work just fine on lowered types,
so there's no need to carry along a formal type. Make the value/address
duality clearer, and enforce it in the verifier.
Although it's not used anymore we still have to support it to be able to read old Swift.interface files which still contain the builtin.
rdar://144781646
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
* Implement Builtin.freeze for integer and integer-vector types.
https://llvm.org/docs/LangRef.html#freeze-instruction
> If the argument is undef or poison, ‘freeze’ returns an arbitrary, but fixed, value of type ‘ty’. Otherwise, this instruction is a no-op and returns the input argument. All uses of a value returned by the same ‘freeze’ instruction are guaranteed to always observe the same value, while different ‘freeze’ instructions may yield different values.
It's most importation for integer and integer-vector types because floating-point results are generally not poison (except in the case of conversion from poison integer values).
However, we might want to implement this for other types as well in the future.
* Make builtin.freeze TrivialUse
Also fix filecheck patterns for its test to work with asserts build.
The copy operator has been implemented and doesn't use it. Remove
`Builtin.copy` and `_copy` as much as currently possible.
Source compatibility requires that `_copy` remain in the stdlib. It is
deprecated here and just uses the copy operator.
Handling old swiftinterfaces requires that `Builtin.copy` be defined.
Redefine it here as a passthrough--SILGen machinery will produce the
necessary copy_addr.
rdar://127502242
Call `swift_clearSensitive` after destroying or taking "sensitive" struct types.
Also, support calling C-functions with "sensitive" parameters or return values. In SIL, sensitive types are address-only and so are sensitive parameters/return values.
Though, (small) sensitive C-structs are passed directly to/from C-functions. We need re-abstract such parameter and return values for C-functions.
We add the `memory(argmem: readwrite)` attribute to swift_task_create,
which means that the call is only allowed to read or write "pointer
operands". LLVM is smart enough to look through obvious ptrtoint
casts, but not to look through integer selects and so on, which is what
we produce when there's an opaque optional operand that feeds into the
builtin. This was causing miscompiles under optimization when using
`@isolated(any)` function types for task creation, since we're not yet
clever enough to fold the function_extract_isolation for a known function
(and of course it's not necessarily a known function anyway).
LLVM is presumably moving towards `std::string_view` -
`StringRef::startswith` is deprecated on tip. `SmallString::startswith`
was just renamed there (maybe with some small deprecation inbetween, but
if so, we've missed it).
The `SmallString::startswith` references were moved to
`.str().starts_with()`, rather than adding the `starts_with` on
`stable/20230725` as we only had a few of them. Open to switching that
over if anyone feels strongly though.
We've been building up this exponential explosion of task-creation
builtins because it's not currently possible to overload builtins.
As long as all of the operands are scalar, though, it's pretty easy
to peephole optional injections in IRGen, which means we can at
least just use a single builtin in SIL and then break it apart in
IRGen to decide which options to set.
I also eliminated the metadata argument, which can easily be recreated
from the substitutions. I also added proper verification for the builtin,
which required (1) getting `@Sendable` right more consistently and (2)
updating a bunch of tests checking for things that are not actually
valid, like passing a function that returns an Int directly.
Concurrency runtime expects discarding task operation entrypoint
function not to have result type, but the current SILGen
implementation generates reabstraction thunk to convert `() -> Void`
to `() -> T` for the operation function.
Since the `T` is always `Void` for DiscardingTG, the mismatch of result
type expectation does not cause any problem on most platforms, but the
signature mismatch causes a problem on WebAssembly.
This patch introduces new builtin operations for creating discarding
task, which always takes `() -> Void` as the operation function type.
When the differentiating a function containing loops, we allocate a linear map context object on the heap. This context object may store non-trivial objects, such as closures, that need to be released explicitly. Fix the autodiff linear map context allocation builtins to correctly release such objects and not just free the memory they occupy.
We can't really treat them as always-initialized because that makes move checking
think that there's a value to destroy even on initialization, causing deinits to
run on uninitialized memory. Remove my previous hack, and use a `zeroInitializer`
to initialize the value state when emitting `init`, which is where we really need
the bootstrapping-into-initialized behavior. rdar://113057256
Those builtins always need to assume a thick metatype which is a pointer.
In other words the builtins need to use the maximally abstracted type.
rdar://108308786
* [Executors][Distributed] custom executors for distributed actor
* harden ordering guarantees of synthesised fields
* the issue was that a non-default actor must implement the is remote check differently
* NonDefaultDistributedActor to complete support and remote flag handling
* invoke nonDefaultDistributedActorInitialize when necessary in SILGen
* refactor inline assertion into method
* cleanup
* [Executors][Distributed] Update module version for NonDefaultDistributedActor
* Minor docs cleanup
* we solved those fixme's
* add mangling test for non-def-dist-actor
Noncopyable types aren't really "POD", but the bit is still useful to track
whether a noncopyable type has a no-op destroy operation, so rename the
existing bit to be more specific within IRGen's implementation.
Don't rename it in the runtime or Builtin names yet, since doing so will
require a naming transition for compatibility.
In preparation for moving to llvm's opaque pointer representation
replace getPointerElementType and CreateCall/CreateLoad/Store uses that
dependent on the address operand's pointer element type.
This means an `Address` carries the element type and we use
`FunctionPointer` in more places or read the function type off the
`llvm::Function`.
This is a dedicated instruction for incrementing a
profiler counter, which lowers to the
`llvm.instrprof.increment` intrinsic. This
replaces the builtin instruction that was
previously used, and ensures that its arguments
are statically known. This ensures that SIL
optimization passes do not invalidate the
instruction, fixing some code coverage cases in
`-O`.
rdar://39146527
By using the keyword instead of the function, we actually get a much simpler
implementation since we avoid all of the machinery of SILGenApply. Given that we
are going down that path, I am removing the old builtin implementation since it
is dead code.
The reason why I am removing this now is that in a subsequent commit, I want to
move all of the ownership checking passes to run /before/ mandatory inlining. I
originally placed the passes after mandatory inlining since the function version
of the move keyword was transparent and needing to be inlined before we could
process it. Since we use the keyword now, that is no longer an issue.
The new intrinsic, exposed via static functions on Task<T, Never> and
Task<T, Error> (rethrowing), begins an asynchronous context within a
synchronous caller's context. This is only available for use under the
task-to-thread concurrency model, and even then only under SPI.
`PointerType::getElementType` has been removed entirely as part of the
opaque pointers migration. Update to `getPointerElementType` for now
until we've also migrated.