- VTableSpecializer, a new pass that synthesizes a new vtable per each observed concrete type used
- Don't use full type metadata refs in embedded Swift
- Lazily emit specialized class metadata (LazySpecializedClassMetadata) in IRGen
- Don't emit regular class metadata for a class decl if it's generic (only emit the specialized metadata)
- In embedded Swift, classes get a simplified metadata: Basically just a vtable + destructor + superclass pointer.
- Only non-resilient (intended as permanent restriction), non-generic classes (for now) supported.
- Relax the check that prohibits metadata emission and usage to allow classes.
This will be used to provide a safe overload of `std::vector::erase` in Swift.
`std::vector::erase` is not currently imported into Swift because it returns a C++ iterator.
rdar://113704853
This makes it possible to initialize `std::vector` from a Swift Sequence. This also conforms C++ vectors to `ExpressibleByArrayLiteral`, making it possible, for instance, to pass a Swift array to a C++ function that takes a vector of strings as a parameter.
rdar://104826995
`ReadOnly`/`ArgMemOnly` were mostly moved over, but a few were missed.
Update them all. Also default to `unknown` for no memory effects rather
than none (ie. we should be conservative).
This is an inheritor of the existing `UnsafeCxxInputIterator` protocol, with the only difference being the ability to mutate `var pointee` via a non-const `operator*()`.
This is needed to support mutable subscripts for `std::map` via `CxxDictionary`.
rdar://105399019
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
`std::set::insert` isn't exposed into Swift, because it returns an instance of an unsafe type.
This change adds a Swift overload of `insert` for `std::set` and `std::unordered_set` that has the return type identical to `Swift.Set.insert`: a tuple of `(inserted: Bool, memberAfterInsert: Element)`.
rdar://111036912
* [IRGen] Fix layout string generation for pre-specialized metadata
rdar://108012057
Pre-specialized metadata has to be specifically handled by using the bound generic type instead of the unbound one. All the necessary information is already being passed down as BoundGenericTypeCharacteristics, we just need to apply them when present.
* Add tests and a few fixes
* Fixes after rebase
* Attempt to fix Windows linker issue in test
This removes the "optimization" where a function type, metatype or
tuple type was split up into structural components, because it seems
that in general we need this structural type metadata again.
Similarly, this no longer tries to split up dependent concrete
conformances and instead passes the witness table in the context.
This makes the context larger potentially, but it avoids calls to
metadata access functions and swift_getWitnessTable() every time the
closure is invoked.
* [IRGen] Use ConditionalDominanceScope in AbstractMetadataAccessor::emit
rdar://103179745
Under certain conditions the missing dominance scope caused a cached witness table ref to be used in a block that it was not available in.
* Fix target in test
* [IRGen] Make pointers to accessor functions in layout strings relative
rdar://106319336
Pointers embedded in static layout strings should always be relative, so layout strings can reside in read-only memory.
* Properly handle reference storage ownership
* Pass layout tag and metadata / type layout ppointers separately
* Layout string instantiation fully working
* Fix cases where hasLayoutString flag was not set when it should have
* Update include/swift/ABI/Metadata.h
* [Executors][Distributed] custom executors for distributed actor
* harden ordering guarantees of synthesised fields
* the issue was that a non-default actor must implement the is remote check differently
* NonDefaultDistributedActor to complete support and remote flag handling
* invoke nonDefaultDistributedActorInitialize when necessary in SILGen
* refactor inline assertion into method
* cleanup
* [Executors][Distributed] Update module version for NonDefaultDistributedActor
* Minor docs cleanup
* we solved those fixme's
* add mangling test for non-def-dist-actor
A lot of the fixes here are adjustments to compensate in the
fulfillment and metadata-path subsystems for the recent pack
substitutions representation change. I think these adjustments
really make the case for why the change was the right one to make:
the code was clearly not considering the possibility of packs
in these positions, and the need to handle packs makes everything
work out much more cleanly.
There's still some work that needs to happen around type packs;
in particular, we're not caching them or fulfilling them as a
whole, and we do have the setup to do that properly now.
CF_OPTIONS is defined differently in the SDK based on
a __cplusplus preprocessor branch. As a result, declarations
referencing CF_OPTIONS are mangled differently depending
on if C++ interop is enabled.
This meant a module compiled with cxx interop on could
not be linked with a module compiled without and vice versa.
This patch modifies the mangler such that the mangled names
are consistent. This is achieved by feeding the mangler a modified
AST node that looks like the Objective-C definition of CF_OPTIONS,
even when we have cxx interop enabled.
* [IRGen] Add layout strings for generic and resilient types
rdar://105837048
* Add some corner cases
* Add flag to enable generic instantiation and some fixes
* Fix resilient types
* Fix metadata accessor function pointers in combined layout strings