This isn't a "complete" port of the standard library for embedded Swift, but
something that should serve as a starting point for further iterations on the
stdlib.
- General CMake logic for building a library as ".swiftmodule only" (ONLY_SWIFTMODULE).
- CMake logic in stdlib/public/core/CMakeLists.txt to start building the embedded stdlib for a handful of hardcoded target triples.
- Lots of annotations throughout the standard library to make types, functions, protocols unavailable in embedded Swift (@_unavailableInEmbedded).
- Mainly this is about stdlib functionality that relies on existentials, type erasure, metatypes, reflection, string interpolations.
- We rely on function body removal of unavailable functions to eliminate the actual problematic SIL code (existentials).
- Many .swift files are not included in the compilation of embedded stdlib at all, to simplify the scope of the annotations.
- EmbeddedStubs.swift is used to stub out (as unavailable and fatalError'd) the missing functionality.
Introduce checking of ConcurrentValue conformances:
- For structs, check that each stored property conforms to ConcurrentValue
- For enums, check that each associated value conforms to ConcurrentValue
- For classes, check that each stored property is immutable and conforms
to ConcurrentValue
Because all of the stored properties / associated values need to be
visible for this check to work, limit ConcurrentValue conformances to
be in the same source file as the type definition.
This checking can be disabled by conforming to a new marker protocol,
UnsafeConcurrentValue, that refines ConcurrentValue.
UnsafeConcurrentValue otherwise his no specific meaning. This allows
both "I know what I'm doing" for types that manage concurrent access
themselves as well as enabling retroactive conformance, both of which
are fundamentally unsafe but also quite necessary.
The bulk of this change ended up being to the standard library, because
all conformances of standard library types to the ConcurrentValue
protocol needed to be sunk down into the standard library so they
would benefit from the checking above. There were numerous little
mistakes in the initial pass through the stsandard library types that
have now been corrected.
Without this change, SILGen will crash when compiling a use of the
derived protocol's requirement: it will instead attempt to use
the base protocol's requirement, but the code will have been
type-checked incorrectly for that.
This has a potential for source-compatibility impact if anyone's
using explicit override checking for their protocol requirements:
reasonable idioms like overriding a mutating requirement with a
non-mutating one will no longer count as an override. However,
this is arguably a bug-fix, because the current designed intent
of protocol override checking is to not allow any differences in
type, even "covariant" changes like making a mutating requirement
non-mutating. Moreover, we believe explicit override checking in
protocols is quite uncommon, so the overall compatibility impact
will be low.
This also has a potential for ABI impact whenever something that
was once an override becomes a non-override and thus requires a
new entry. It might require a contrived test case to demonstrate
that while using the derived entry, but it's quite possible to
imagine a situation where the derived entry is not used directly
but nonetheless has ABI impact.
Furthermore, as part of developing this patch (earlier versions of
which used stricter rules in places), I discovered a number of
places where the standard library was unintentionally introducing
a new requirement in a derived protocol when it intended only to
guide associated type deduction. Fixing that (as I have in this
patch) *definitely* has ABI impact.
* Removing FIXME from methods also marked always/never
* Unavailable/deprecated things don't need inlining
* Trivial implementations
* Enum namespaces
* Unsafe performance of opaque/raw pointer
* Dump doesn't need to be fast
* Error paths shouldn't require inlining
* Consistency with surrounding code
* Lazy performance needs specialization
- Make RawRepresentable Codable abstracts distinguishable
- Make the UnboundedRange example a little more user friendly
- Correct the RangeReplaceableCollection example description
- Revise CaseIterable discussion
* Make Range conditionally a Collection
* Convert ClosedRange to conditionally a collection
* De-gyb Range/ClosedRange, refactoring some methods.
* Remove use of Countable{Closed}Range from stdlib
* Remove Countable use from Foundation
* Fix test errors and warnings resulting from Range/CountableRange collapse
* fix prespecialize test for new mangling
* Update CoreAudio use of CountableRange
* Update SwiftSyntax use of CountableRange
* Restore ClosedRange.Index: Hashable conformance
* Move fixed typechecker slowness test for array-of-ranges from slow to fast, yay
* Apply Doug's patch to loosen test to just check for error
* Refactor Indices and Slice to use conditional conformance
* Replace ReversedRandomAccessCollection with a conditional extension
* Refactor some types into struct+extensions
* Revise Slice documentation
* Fix test cases for adoption of conditional conformances.
* [RangeReplaceableCollection] Eliminate unnecessary slicing subscript operator.
* Add -enable-experimental-conditional-conformances to test.
* Gruesome workaround for crasher in MutableSlice tests
Added tests for expected-error and fix-its.
- Add arguments signature regardless that is the same as before.
Because the error message looks more natural.
e.g. "makeIterator" => "makeIterator()",
"replaceSubrange" => "replaceSubrange(_:with:)"
- Any${ExistentialCollection}.underestimateCount() was a method, not
computed property.
- 'LazySequenceType' has been renamed to 'LazySequenceProtocol', but not
'LazyCollectionProtocol'
- Streamable.writeTo(_:) had no argument label.
- Fixed typo in print() debugPrint() error message (not working for now)
- Repeated.init(): changed `renamed` to `message` because the arugment
order has changed.
- Marked `public` for some unavailable method on `Sequence`
- Sequence.split(_:maxSplit:allowEmptySlices) was replaced with
split(separator:maxSplits:omittingEmptySubsequences:),
not split(separator:omittingEmptySubsequences:isSeparator:)
- Sequence.split(_:allowEmptySlices:isSeparator) was replaced with
split(maxSplits:omittingEmptySubsequences:isSeparator:),
not split(_:omittingEmptySubsequences:isSeparator:)
- Sequence.startsWith(_:isEquivalent:) or startsWith(_:) had no label on
the first argument.
- transcode(_:_:_:_:stopOnError), not transcode(_:_:_:_:stoppingOnError)
- Removed mutating methods from UnsafePointer.
alloc(_:), dealloc(_:), setter:memory, initialize(_:), destroy(),
and destroy(_:)
This documentation revision covers a large number of types & protocols:
String, its views and their indices, the Unicode codec types and protocol,
as well as Character, UnicodeScalar, and StaticString, among others.
This also includes a few small changes across the standard library for
consistency.
precondition(), when used in the standard library, does not respect the
debug/release build setting of the module or application importing the
standard library.
The defaults we were generating for Collection and
BidirectionalCollection didn't make any sense, because if you could do
that strideable arithmetic then you essentially had random access.
Instead we constrain the defaults to apply to RandomAccessCollection
where the Indices are a CountableRange.
- Instead of just one there are now three:
- LazyCollection
- LazyBidirectionalCollection
- LazyRandomAccessCollection
- ReversedCollection now conforms to BidirectionalCollection
- Lazy tests compile and run (#if'ed pieces that don't typecheck)
- Instead of just one there are now three:
- LazyCollection
- LazyBidirectionalCollection
- LazyRandomAccessCollection
- ReversedCollection now conforms to BidirectionalCollection
- Lazy tests compile and run (#if'ed pieces that don't typecheck)