Certain dynamic casts cannot work safely with isolated conformances,
regardless of what executor the code runs on. For such cases, reject
all attempts to conform to the type.
Replace the pair of global actor type/conformance we are passing around with
a general "conformance execution context" that could grow new functionality
over time. Add three external symbols to the runtime:
* swift_conformsToProtocolWithExecutionContext: a conforms-to-protocol check
that also captures the execution context that should be checked before
using the conformance for anything. The only execution context right now
is for an isolated conformance.
* swift_isInConformanceExecutionContext: checks whether the function is
being executed in the given execution context, i.e., running on the
executor for the given global actor.
* swift_ConformanceExecutionContextSize: the size of the conformance
execution context. Client code outside of the Swift runtime can allocate
a pointer-aligned region of memory of this size to use with the runtime
functions above.
In the prior implementation of runtime resolution of isolated conformances,
the runtime had to look in both the protocol conformance descriptor and
in all conditional conformance requirements (recursively) to find any
isolated conformances. If it found one, it had to demangle the global
actor type to metadata. Since swift_conformsToProtocol is a hot path through
the runtime, we can't afford this non-constant-time work in the common
case.
Instead, cache the resolved global actor and witness table as part of the
conformance cache, so that we have access to this information every time
we look up a witness table for a conformance. Propagate this up through
various callers (e.g., generic requirement checking) to the point where
we either stash it in the cache or check it at runtime. This gets us down
to a very quick check (basically, NULL-or-not) for nonisolated conformances,
and just one check for isolated conformances.
A `@convention(block)` closure in Swift is completely compatible with Objective-C
and does not need to be wrapped in a `__SwiftValue` box for use.
Previously, it was bridged verbatim when appearing by itself, but
could end up boxed when it went through array bridging.
The test verifies that:
* Objective-C does not see a `__SwiftValue` box
* Swift `type(of:)` does not see a `__SwiftValue` box
* Objective-C can actually call the closure
Resolves rdar://138132321
The way that we include COMPATIBILITY_OVERRIDE_INCLUDE_PATH freaks out the
syntax highlighting of editors like emacs. It causes the whole file to be
highlighted like it is part of the include string.
To work around this, this patch creates a separate file called
CompatibilityOverrideIncludePath.h that just includes
COMPATIBILITY_OVERRIDE_INCLUDE_PATH. So its syntax highlighting is borked, but
at least in the actual files that contain real code, the syntax highlighting is
restored.
This inserts a suitably named function into the stack trace whenever
a dynamic cast failure involves a NULL source or target type.
Very often, crash logs include backtraces with function names but
no log output; with this change, such a backtrace might look like
the following -- note `TARGET_TYPE_NULL` in the function name
here to mark the missing type information:
```
frame #0: __pthread_kill + 8
frame #1: pthread_kill + 288
frame #2: abort + 128
frame #3: swift::fatalErrorv()
frame #4: swift::fatalError()
frame #5: swift_dynamicCastFailure_TARGET_TYPE_NULL()
frame #6: swift::swift_dynamicCastFailure()
frame #7: ::swift_dynamicCast()
```
Resolves rdar://130630157
type(of:) now returns the dynamic type of the contents of
an extended existential (just like it does for a regular existential)
Mirror can now reflect fields of a value stored inside an extended
existential (just like it can with a regular existential). This
requires type(of:) support, since Mirror internals use that to
determine how to reflect a value.
Resolves rdar://102906195
Ensure that context descriptor pointers are signed in the runtime by putting the ptrauth_struct attribute on the types.
We use the new __builtin_ptrauth_struct_key/disc to conditionally apply ptrauth_struct to TrailingObjects based on the signing of the base type, so that pointers to TrailingObjects get signed when used with a context descriptor pointer.
We add new runtime entrypoints that take signed pointers where appropriate, and have the compiler emit calls to the new entrypoints when targeting a sufficiently new OS.
rdar://111480914
This replaces a number of `#include`-s like this:
```
#include "../../../stdlib/public/SwiftShims/Visibility.h"
```
with this:
```
#include "swift/shims/Visibility.h"
```
This is needed to allow SwiftCompilerSources to use C++ headers which include SwiftShims headers. Currently trying to do that results in errors:
```
swift/swift/include/swift/Demangling/../../../stdlib/public/SwiftShims/module.modulemap:1:8: error: redefinition of module 'SwiftShims'
module SwiftShims {
^
Builds.noindex/swift/swift/bootstrapping0/lib/swift/shims/module.modulemap:1:8: note: previously defined here
module SwiftShims {
^
```
This happens because the headers in both the source dir and the build dir refer to SwiftShims headers by relative path, and both the source root and the build root contain SwiftShims headers (which are equivalent, but since they are located in different dirs, Clang treats them as different modules).
Moved all the threading code to one place. Added explicit support for
Darwin, Linux, Pthreads, C11 threads and Win32 threads, including new
implementations of Once for Linux, Pthreads, C11 and Win32.
rdar://90776105
Moved all the threading code to one place. Added explicit support for
Darwin, Linux, Pthreads, C11 threads and Win32 threads, including new
implementations of Once for Linux, Pthreads, C11 and Win32.
rdar://90776105
Reduces the number of _ContiguousArrayStorage metadata.
In order to support constant time bridging we do need to set the correct
metadata when we bridge to Objective-C. This is so that the type check
succeeds when bridging back from Objective-C to reuse the storage
instance rather than bridging the elements.
To support dynamically setting the `_ContiguousArrayStorage` element
type i needed to add support for optimizing `alloc_ref_dynamic`
throughout the optimizer.
Possible future improvements:
* Use different metadata such that we can disambiguate native Swift
classes during destruction -- allowing native release rather then unknown
release usage.
* Optimize the newly added semantic function
getContiguousArrayStorageType
rdar://86171143
On Windows, std::max_align_t is only 8-byte aligned, but Swift assumes 16-byte alignment. MaximumAlignment is our notion of the maximum alignment of a type, so use that instead.
Mangling can fail, usually because the Node structure has been built
incorrectly or because something isn't supported with the old remangler.
We shouldn't just terminate the program when that happens, particularly
if it happens because someone has passed bad data to the demangler.
rdar://79725187
Take the existing CompatibilityOverride mechanism and generalize it so it can be used in both the runtime and Concurrency libraries. The mechanism is preprocessor-heavy, so this requires some tricks. Use the SWIFT_TARGET_LIBRARY_NAME define to distinguish the libraries, and use a different .def file and mach-o section name accordingly.
We want the global/main executor functions to be a little more flexible. Instead of using the override mechanism, we expose function pointers that can be set by the compatibility library, or by any other code that wants to use a custom implementation.
rdar://73726764
* Dynamic Cast Rework: Runtime
This is a completely refactored version of the core swift_dynamicCast
runtime method.
This fixes a number of bugs, especially in the handling of multiply-wrapped
types such as Optional within Any. The result should be much closer to the
behavior specified by `docs/DynamicCasting.md`.
Most of the type-specific logic is simply copied over from the
earlier implementation, but the overall structure has been changed
to be uniformly recursive. In particular, this provides uniform
handling of Optional, existentials, Any and other common "box"
types along all paths. The consistent structure should also be
easier to update in the future with new general types.
Benchmarking does not show any noticable performance implications.
**Temporarily**, the old implementation is still available. Setting the
environment variable `SWIFT_OLD_DYNAMIC_CAST_RUNTIME` before launching a program
will use the old runtime implementation. This is only to facilitate testing;
once the new implementation is stable, I expect to completely remove the old
implementation.
* SR-12486: `T.self is Any.Protocol` is broken
This turned out to be fallout from https://github.com/apple/swift/pull/27572
which was in turn motivated by our confusing metatype syntax when generic variables are bound to protocols.
In particular, the earlier PR was an attempt to make the expression
`x is T.Type` (where `T` is a generic type variable bound to a protocol `P`)
behave the same as
`x is P.Type` (where `P` is a protocol).
Unfortunately, the generic `T.Type` actually binds to `P.Protocol` in this case (not `P.Type`), so the original motivation was flawed, and as it happens, `x is T.Type` already behaved the same as `x is P.Protocol` in this situation.
This PR reverts that earlier change and beefs up some of the tests around these behaviors.
Resolves SR-12486
Resolves rdar://62201613
Reverts PR#27572
Rather than using the forward declaration for the LLVMSupport types,
expect to be able to use the full declaration. Because these are
references in the implementation, there is no reason to use a forward
declaration as the full types need to be declared for use. The LLVM
headers will provide the declaration and definition for the types. This
is motivated by the desire to ensure that the LLVMSupport symbols are
properly namespaced to avoid ODR violations in the runtime.
This reduces the dependency on `LLVMSupport`. This is the first step
towards helping move towards a local fork of the LLVM ADT to ensure that
static linking of the Swift runtime and core library does not result in
ODR violations.
This seems to be the single most common bridge cast,
and repeated lookup seems to be a performance issue
for the common operation of bridging a string-valued
NSDictionary into Swift. Spending a couple of static
words of memory to memoize it should be a nice perf win.
Resolves rdar://55237013