The driver infers the filename from the module file by replacing the extension,
and passes the explicit path to the swiftdoc file to the frontend. But there
is no option in the driver to control emission of swiftdoc (it is always
emitted, and name is always inferred from the swiftmodule name).
The swiftdoc file consists of a single table that maps USRs to {brief comment,
raw comment}. In order to look up a comment for decl we generate the USR
first. We hope that the performance hit will not be that bad, because most
declarations come from Clang. The advantage of this design is that the
swiftdoc file is not locked to the swiftmodule file, and can be updated,
replaced, and even localized.
Swift SVN r14914
When a subclass does not implement a designated initializer of its
superclass, introduce a stub initializer that simply traps. Such stubs
cannot be invoked directly using Swift syntax, but can be invoked
through the Objective-C runtime and from Objective-C code. Catch such
errors rather than allowing them to violate the memory safety of the
language.
Note that we're currently using cond_fail to trap; this will be
improved in the future,
Swift SVN r14839
Let ArchetypeType nested types and PotentialArchetypes be bound to concrete types in addition to archetypes. Constraints to outer context archetypes still suffer type-checker issues, but constraints to true concrete types should work now.
Swift SVN r14832
Previously, serialization of a single source file only includes decls that
are within the SourceFile context. However, new top-level decls can be
added in order to derive protocol conformances; these decls need to be
serialized /somewhere/. Add the concept of decls "forced" to be serialized
along with the decls within the primary SourceFile context, and then mark
all derived top-level decls as "forced" if they come from a decl in the
primary source file.
Possibly a fix for <rdar://problem/16254101>, which crashes nearby.
Swift SVN r14817
Add __FUNCTION__ to the repertoire of magic source-location-identifying tokens. Inside a function, it gives the function name; inside a property accessor, it gives the property name; inside special members like 'init', 'subscript', and 'deinit', it gives the keyword name, and at top level, it gives the module name. As a bit of future-proofing, stringify the full DeclName, even though we only ever give declarations simple names currently.
Swift SVN r14710
The 'override' attribute indicates that the given declaration, which
may be a method, property, or subscript, overrides a declaration in
its superclass. Per today's discussion, the 'override' attribute must
be present if and only if the corresponding declaration overrides a
declaration in its superclass.
This implements most of <rdar://problem/14798539>. There's still more
work to do to on property and subscript overrides.
Swift SVN r14388
The default (F_None) used to mean F_Text, now it is F_Binary, which is arguably
a better default. It only matters on Windows anyway, so just use F_None (to
mean binary mode) everywhere to allow Swift to be compled with older LLVM as
well as current ToT.
Swift SVN r14312
These changes add support for build and target configurations in the compiler.
Build and target configurations, combined with the use of #if/#else/#endif allow
for conditional compilation within declaration and statement contexts.
Build configurations can be passed into the compiler via the new '-D' flag, or
set within the LangOptions class. Target configurations are implicit, and
currently only "os" and "arch" are supported.
Swift SVN r14305
We can attach comments to declarations. Right now we only support comments
that precede the declarations (trailing comments will be supported later).
The implementation approach is different from one we have in Clang. In Swift
the Lexer attaches the comments to the next token, and parser checks if
comments are present on the first token of the declaration. This is much
cleaner, and faster than Clang's approach (where we perform a binary search on
source locations and do ad-hoc fixups afterwards).
The comment <-> decl correspondence is modeled as "virtual" attributes that can
not be spelled in the source. These attributes are not serialized at the
moment -- this will be implemented later.
Swift SVN r14031
Previously, we would just parse vars and subscripts with no definitions,
then let getters and setters be referenced arbitrarily later. This was
problematic for a number of reasons, not least of which, the .sil file
might be invalid.
Instead, change sil to require that a protocol style definition indicate
whether a vardecl/subscript is computed or not, and whether it is both
get-able and set-able, e.g. like "var x : Int { get }". Change the
sil printer to print decls in this form, and change the SILParser to
make SILDeclRef::Func values instead of ::Getter/Setter values.
One thing that this exposed is that we weren't correctly serializing the
accessor state in modules, so accessors would get detatched from their
AbstractStorageDecls when deserialized (and in fact, their ASD never got
deserialized at all in some cases). Fix this in the serialization of
the accessors.
NFC, other than the SIL printer and parser.
Swift SVN r13884
We kinda need those. Limit the hack to pad it out with nulls to only apply in the case when the conformance list is empty but the original archetype requires conformances, which only occurs for archetypes or existentials.
At long last, we can build at -O0 again, again! Reapplying now that Jordan fixed some fallout this had on his objc printer tests. Thanks Jordan!
Swift SVN r13840
We kinda need those. Limit the hack to pad it out with nulls to only apply in the case when the conformance list is empty but the original archetype requires conformances, which only occurs for archetypes or existentials.
At long last, we can build at -O0 again!
Swift SVN r13815
This is mostly useful for the standard library, whose name is going to
change to "Swift" soon. (See <rdar://problem/15972383>.) But it's good DRY.
Swift SVN r13758
Introduce a new expression kind, OpenExistentialExpr, that "opens" up
an existential value into a value of a fresh archetype type that
represents the dynamic type of the existential. That value can be
referenced (via an OpaqueValueExpr) within the within the
subexpression of OpenExistentialExpr. For example, a call to a
DynamicSelf method on an existential looks something like this:
(open_existential_expr implicit type='P'
(opaque_value_expr implicit type='opened P' @ 0x7fd95207c290
unique)
(load_expr implicit type='P'
(declref_expr type='@lvalue P' decl=t.(file).func
decl.p@t.swift:5:37 specialized=no))
(erasure_expr implicit type='P'
(call_expr type='opened P'
(archetype_member_ref_expr type='() -> opened P'
decl=t.(file).P.f@t.swift:2:8 [with Self=opened P]
(opaque_value_expr implicit type='opened P' @
0x7fd95207c290 unique))
(tuple_expr type='()')))))
Note that we're using archetype_member_ref_expr rather than
existential_member_ref_expr, because the call is operating on the
opaque_value_expr of archetype type. The outer erasure turns the
archetype value back into an existential value.
The SILGen side of this is somewhat incomplete; we're using
project_existential[_ref] to open the existential, which is almost
correct: it gives us access to the value as an archetype, but IRGen
doesn't know to treat the archetype type as a fresh archetype whose
conformances come from the existential. Additionally, the output of
the opened type is not properly parsable. I'll fix this in follow-on
commits.
Finally, the type checker very narrowly introduces support for
OpenExistentialExpr as it pertains to DynamicSelf. However, this can
generalize to support all accesses into existentials, eliminating the
need for ExistentialMemberRef and ExistentialSubscript in the AST and
protocol_method in SIL, as well as enabling more advanced existential
features should we want them later.
Swift SVN r13740
There are some straggling references to the context generic param list, but nothing uses the non-interface param or result types anymore!
Swift SVN r13725
Edge SILFunction one step closer to independence from SILFunctionType context by taking the generic param list as a separate constructor parameter, and serializing those params alongside the function record. For now we still pass in the context params from the SILFunctionType in most cases, because the logic for finding the generic params tends to be entangled in type lowering, but this pushes the problem up a step.
Thanks Jordan for helping work out the serialization changes needed.
Compared to r13036, this version of the patch includes the decls_block RecordKind enumerators for the GENERIC_PARAM_LIST layouts in the sil_block RecordKind enumerator, as Jordan had suggested before. r13036 caused buildbot failures when building for iOS, but I am unable to reproduce those failures locally now.
Swift SVN r13485
This re-applies r13401, reverted in r13404. This wasn't actually causing
problems, but got pulled along with r13400 (reverted in r13405).
Swift SVN r13452
with FuncDecls. This allows us to eliminate special case code for handling
self in various parts of the compiler.
This also improves loc info (debug info and AST info) because 'self' now
has a location instead of being invalid.
I also took the opportunity to factor a bunch of places creating self decls
to use similar patterns and less copy and paste code.
Swift SVN r13196