The typedef `swift::Module` was a temporary solution that allowed
`swift::Module` to be renamed to `swift::ModuleDecl` without requiring
every single callsite to be modified.
Modify all the callsites, and get rid of the typedef.
Store leading a trailing "trivia" around a token, such as whitespace,
comments, doc comments, and escaping backticks. These are syntactically
important for preserving formatting when printing ASTs but don't
semantically affect the program.
Tokens take all trailing trivia up to, but not including, the next
newline. This is important to maintain checks that statements without
semicolon separators start on a new line, among other things.
Trivia are now data attached to the ends of tokens, not tokens
themselves.
Create a new Syntax sublibrary for upcoming immutable, persistent,
thread-safe ASTs, which will contain only the syntactic information
about source structure, as well as for generating new source code, and
structural editing. Proactively move swift::Token into there.
Since this patch is getting a bit large, a token fuzzer which checks
for round-trip equivlence with the workflow:
fuzzer => token stream => file1
=> Lexer => token stream => file 2 => diff(file1, file2)
Will arrive in a subsequent commit.
This patch does not change the grammar.
There was a ton of complicated logic here to work around
two problems:
- Same-type constraints were not represented properly in
RequirementReprs, requiring us to store them in strong form
and parse them out when printing type interfaces.
- The TypeBase::getAllGenericArgs() method did not do the
right thing for members of protocols and protocol extensions,
and so instead of simple calls to Type::subst(), we had
an elaborate 'ArchetypeTransformer' abstraction repeated
in two places.
Rewrite this code to use GenericSignatures and
GenericFunctionType instead of old-school GenericParamLists
and PolymorphicFunctionType.
This changes the code completion and AST printer output
slightly. A few of the changes are actually fixes for cases
where the old code didn't handle substitutions properly.
A few others are subjective, for example a generic parameter
list of the form <T : Proto> now prints as <T where T : Proto>.
We can add heuristics to make the output whatever we want
here; the important thing is that now we're using modern
abstractions.
This patch allows SourceKit to generate the interface for a given type specified by its mangled name.
Type interface is refined decl printing with type parameters localized and unusable members hidden.
Required field:
"key.request": "source.request.editor.open.interface.swifttype"
"key.usr": the mangled name of the given type.
Pass through the original Type in addition to the TypeDecl so that we
can distinguish DynamicSelfType with underlying ClassType from just any
old ClassType.
rdar://problem/25158493
When printing the interface for a (sub)module, make sure that we only
print those extensions that were created to hold that submodule's
globals that were imported as members.
I want to start using this for other things like function types and
attributes, so rename it to reflect the new scope. I'm not really happy
with "PrintStructureKind", etc. but haven't come up with anything
better so far.
The current approach of visiting the param decl won't work when we want
to visit the parameters of function *types*, or when visiting tuple
elements (which aren't themselves decls).
rdar://problem/24292226
As the initial step, we remove any synthesized extensions requiring a tuple's conforming to nominals, which
never happens. This will remove multiple useless synthesized extensions for Dictionary.
We can have multiple printDeclPre callbacks pending (e.g top-level-code
decls), so use a vector to ensure we don't lose the earlier callbacks.
We also may end up calling printDeclPost without forcing the
corresponding printDeclPre first if the decl doesn't actually print
anything (e.g. an if-config statement when skipping those). So add a
wrapper callPrintDeclPost that can check for this and skip both
callbacks. In theory, we could handle this case by instead making all
ast nodes go through something like shouldPrint() and making an
invariant that something will be printed if and only if shouldPrint
returns true. However, that is not an obvious win, because it forces us
to walk all the first-level statements and decls inside a top-level-code
decl to determine if anything will be printed, and it also means we can
never make local decisions about whether something will be printed. For
now, I've chosen to maintain flexibility by recovering from unprinted
decls.
Finally, add a bunch of assertions to try to keep callbacks sane.
... for the fully annotated declarations. More substructure more better.
This has to go through a callback mechanism similar to printDeclLoc and
printDeclPre since it should be scheduled after both of those are
printed.
rdar://problem/24292226