And, properly treat imports as per-file: when looking up decls through the
TU module, don't pick up every other source file's imports.
This implements our resolution rules:
1. Check the current source file.
2. Check the current module.
3. Check imported modules.
Currently, "import Foo" is treated as a file-private import and
"@reexported import Foo" is treated as a public /and/ module-wide import.
This further suggests that access control is the right tool for re-export
control:
(private) import Foo // current file only
package import Foo // whole module
public import Foo // whole world
Swift SVN r9682
Eliminate the annoying, rarely-firing "while converting 'var' initial
value to declared type" note. We'll eventually have better ways to
deal with this. Otherwise, no functionality change.
Swift SVN r9677
Anywhere that assumes a single input file per TU now has to do so explicitly.
Parsing still puts all files in a single SourceFile instance; that's next on
the list.
There are a lot of issues still to go, but the design is now in place.
Swift SVN r9669
The operator lookup cache already lived in SourceFile, but we need to be
able to look up operators on a per-SourceFile basis. Different files can
have different imports. The interface previously distinguished between
"no operator found" and "error", but none of the call sites were making
use of this distinction, and indeed some were misusing the return value
(Optional<SomeOperatorDecl *>). Now the lookup functions just return
operator decl pointers, which may be null.
Swift SVN r9668
The attached patch is a port of LLVM's PatternMatch infrastructure for SIL.
LLVM's pattern matching infrastructure is how much of InstCombine is implemented
and the brevity of its pattern matching should be a boon to SILCombine's
implementation as well.
Many basic matchers have been implemented, but of course many more *could* be
implemented (i.e. this is a work in progress).
Swift SVN r9650
ASTContexts
This introduces swift::ide::CodeCompletionCache, which is a persistent code
completion result cache.
Right now REPL happens to use it (try importing Cocoa and doing code
completion), and the difference is noticeable. But completion in REPL is
still slow, because Cocoa goes through the AST Verifier on every completion
(for unknown reasons).
This commit does not implement cache invalidation yet, and it does not use
libcache to evict cache entries under memory pressure.
This commit also introduces two regressions:
- We get fewer Cocoa results that expected. Module::isModuleVisible in Clang
does not incorrectly reports that that ObjectiveC.NSObject submodule is not
visible from Cocoa.
- We are not implementing the decl hiding rules correctly. We used to rely on
visible decl lookup to do it for us, but now we have a different data structure
we have real decls from the current module and we have a text-only cache, so we
are forced to reimplement this part of name lookup in code completion.
Swift SVN r9633
Once we've opened method references via the interface type, we then
fold all levels of generic argument specialization into the
DeclRefExpr, rather than using SpecializeExpr. For reference, the call
to x.f in this example:
struct X<T> {
func f<U>(u : U) { }
}
func honk(x: X<Int>) {
x.f("hello")
}
goes from this double-specialized AST:
(specialize_expr implicit type='(u: String) -> ()'
(with U = String)
(dot_syntax_call_expr type='<U> (u: U) -> ()'
(specialize_expr implicit
type='(@inout X<Int>) -> <U> (u: U) -> ()'
(with T = Int)
(declref_expr type='<T> @inout X<T> -> <U> (u: U) -> ()'
decl=t.X.f@t.swift:2:8 specialized=no))
to the cleaner, SpecalizeExpr-free:
(dot_syntax_call_expr type='(u: String) -> ()'
(declref_expr type='(@inout X<Int>) -> (u: String) -> ()'
decl=t.X.f@t.swift:2:8 [with T=Int, U=String]
specialized=no)
which handles substitutions at both levels together. The minor SILGen
tweak
Note that there are numerous other places where we are still generated
SpecializeExprs.
Swift SVN r9614
The underlying mechanism uses darwin's libcache library (if not building on darwin there is a default implementation).
This was originally introduced in SourceKit, but we are moving it to libswiftBasic so it can be utilized by libswiftIDE
for caching code-completion results.
Swift SVN r9610
It'd be nice to eventually report some context information, maybe derived from the location info on the originating 'cond_fail' SIL instruction, but this is a start.
Swift SVN r9589
We already know how to call external functions in SILGen, why reimplement all that in IRGen? Instead of representing the thunk operation as a SIL instruction, let's just emit the thunk using existing SILGen machinery. Fixes <rdar://problem/14097136>.
Swift SVN r9576
Rely on opening the GenericFunctionType of a method, rather than its
PolymorphicFunctionType. Alas, constraint application still falls back to
the PolymorphicFunctionType.
Swift SVN r9564
Replace DeclRefExpr's stored ValueDecl* with a ConcreteDeclRef,
allowing it to store the complete set of substitutions applied to
the declaration. Start storing those substitutions (without using them
yet).
Swift SVN r9535