inlining, generic/closure specialization, and devirtualization optimization passes.
SILFunction::canBeInlinedIntoCaller now exlicitly requires a caller's SerializedKind_t arg.
isAnySerialized() is added as a convenience function that checks if [serialized] or [serialized_for_pkg].
Resolves rdar://128704752
[serialized_for_package] if Package CMO is enabled. The latter kind
allows a function to be serialized even if it contains loadable types,
if Package CMO is enabled. Renamed IsSerialized_t as SerializedKind_t.
The tri-state serialization kind requires validating inlinability
depending on the serialization kinds of callee vs caller; e.g. if the
callee is [serialized_for_package], the caller must be _not_ [serialized].
Renamed `hasValidLinkageForFragileInline` as `canBeInlinedIntoCaller`
that takes in its caller's SerializedKind as an argument. Another argument
`assumeFragileCaller` is also added to ensure that the calle sites of
this function know the caller is serialized unless it's called for SIL
inlining optimization passes.
The [serialized_for_package] attribute is allowed for SIL function, global var,
v-table, and witness-table.
Resolves rdar://128406520
Compute, update and handle borrowed-from instruction in various utilities and passes.
Also, used borrowed-from to simplify `gatherBorrowIntroducers` and `gatherEnclosingValues`.
Replace those utilities by `Value.getBorrowIntroducers` and `Value.getEnclosingValues`, which return a lazily computed Sequence of borrowed/enclosing values.
* move the apply of partial_apply transformation from simplify-apply to simplify-partial_apply
* delete dead partial_apply instructions
* devirtualize apply, try_apply and begin_apply
When devirtualizing a `begin_apply`, it was passing the token's
use list to the conversion function when trying to convert the
yielded result. It's suppose to be the yielded result's list.
This became apparent when it encountered an access of a
`@_borrowed` property and we hit an assertion about an empty
use-list of a guaranteed value, when it was in fact the wrong list!
If the callee is a non-generic thunk which calls a (not inlinable) generic function in the defining module,
it's more efficient to not devirtualize, but call the non-generic thunk - even though it's done through the witness table.
Example:
```
protocol P {
func f(x: [Int]) // not generic
}
struct S: P {
func f(x: some RandomAccessCollection<Int>) { ... } // generic
}
```
In the defining module, the generic conformance can be fully specialized (which is not possible in the client module, because it's not inlinable).
rdar://102623022
Andy some time ago already created the new API but didn't go through and update
the old occurences. I did that in this PR and then deprecated the old API. The
tree is clean, so I could just remove it, but I decided to be nicer to
downstream people by deprecating it first.
Witness thunks where the conforming type is a class and the witness is in a
protocol extension have an extra generic parameter constrained to the class
type that is passed as the 'Self' parameter for the protocol extension
method.
This means the substitution map for the devirtualized call must be
assembled from three sources:
- The 'Self' substitution
- The generic parameters of the concrete conforming type, if any
- The generic parameters of the protocol requirement, if any
This was previously done by making two calls to combineSubstitutionMaps(),
the first call combined the first two maps and the second call combined the
result of the first call with the third map.
Unfortunately, both calls were made with the generic signature of the
witness thunk, and the result of combining the first two substitution maps
does not provide sufficient replacements for all generic parameters and
conformance requirements in the witness thunk's signature.
This was apparently fine with the GenericSignatureBuilder, but the
Requirement Machine flags the missing generic parameters in assert builds.
Fixes https://github.com/apple/swift/issues/59193.
The main point of this change is to make sure that a shared function always has a body: both, in the optimizer pipeline and in the swiftmodule file.
This is important because the compiler always needs to emit code for a shared function. Shared functions cannot be referenced from outside the module.
In several corner cases we missed to maintain this invariant which resulted in unresolved-symbol linker errors.
As side-effect of this change we can drop the shared_external SIL linkage and the IsSerializable flag, which simplifies the serialization and linkage concept.
Start treating the null {Can}GenericSignature as a regular signature
with no requirements and no parameters. This not only makes for a much
safer abstraction, but allows us to simplify a lot of the clients of
GenericSignature that would previously have to check for null before
using the abstraction.
Refactor SILGen's ApplyOptions into an OptionSet, add a
DoesNotAwait flag to go with DoesNotThrow, and sink it
all down into SILInstruction.h.
Then, replace the isNonThrowing() flag in ApplyInst and
BeginApplyInst with getApplyOptions(), and plumb it
through to TryApplyInst as well.
Set the flag when SILGen emits a sync call to a reasync
function.
When set, this disables the SIL verifier check against
calling async functions from sync functions.
Finally, this allows us to add end-to-end tests for
rdar://problem/71098795.
Enable most simplify-cfg optimizations as long as the block arguments
have trivial types. Enable most simplify CFG unit tests cases.
This massively reduces the size of the CFG during OSSA passes.
Test cases that aren't supported in OSSA yet have been moved to a
separate test file for disabled OSSA tests,
Full simplify-cfg support is currently blocked on OSSA utilities which
I haven't checked in yet.
This makes it easier to understand conceptually why a ValueOwnershipKind with
Any ownership is invalid and also allowed me to explicitly document the lattice
that relates ownership constraints/value ownership kinds.
This became necessary after recent function type changes that keep
substituted generic function types abstract even after substitution to
correctly handle automatic opaque result type substitution.
Instead of performing the opaque result type substitution as part of
substituting the generic args the underlying type will now be reified as
part of looking at the parameter/return types which happens as part of
the function convention apis.
rdar://62560867
* Update Devirtualizer's analysis invalidation
castValueToABICompatibleType can change CFG, Devirtualizer uses this api but doesn't check if it modified the cfg
getInstanceWithExactDynamicType returns a new instance and for this the class decl has to be updated.
https://bugs.swift.org/browse/SR-12538
rdar://problem/61911112
A partial_apply of a function_ref whose body consists of just an
apply of a witness_method can be simplified down to a simple
partial_apply of the witness_method:
sil @foo:
%fn = witness_method ...
%result = apply %fn(...)
return %result
sil @bar:
%fn = function_ref @foo
%closure = partial_apply %fn(...)
===>
sil @bar:
%fn = witness_method ...
%closure = partial_apply %fn(...)
Devirtualizing try_apply modified the CFG, but passes that run
devirtualization were not invalidating any CFG analyses, such as the
domtree.
This could hypothetically have caused miscompilation, but will be
caught by running with -sil-verify-all.
https://forums.swift.org/t/improving-the-representation-of-polymorphic-interfaces-in-sil-with-substituted-function-types/29711
This prepares SIL to be able to more accurately preserve the calling convention of
polymorphic generic interfaces by letting the type system represent "substituted function types".
We add a couple of fields to SILFunctionType to support this:
- A substitution map, accessed by `getSubstitutions()`, which maps the generic signature
of the function to its concrete implementation. This will allow, for instance, a protocol
witness for a requirement of type `<Self: P> (Self, ...) -> ...` for a concrete conforming
type `Foo` to express its type as `<Self: P> (Self, ...) -> ... for <Foo>`, preserving the relation
to the protocol interface without relying on the pile of hacks that is the `witness_method`
protocol.
- A bool for whether the generic signature of the function is "implied" by the substitutions.
If true, the generic signature isn't really part of the calling convention of the function.
This will allow closure types to distinguish a closure being passed to a generic function, like
`<T, U> in (*T, *U) -> T for <Int, String>`, from the concrete type `(*Int, *String) -> Int`,
which will make it easier for us to differentiate the representation of those as types, for
instance by giving them different pointer authentication discriminators to harden arm64e
code.
This patch is currently NFC, it just introduces the new APIs and takes a first pass at updating
code to use them. Much more work will need to be done once we start exercising these new
fields.
This does bifurcate some existing APIs:
- SILFunctionType now has two accessors to get its generic signature.
`getSubstGenericSignature` gets the generic signature that is used to apply its
substitution map, if any. `getInvocationGenericSignature` gets the generic signature
used to invoke the function at apply sites. These differ if the generic signature is
implied.
- SILParameterInfo and SILResultInfo values carry the unsubstituted types of the parameters
and results of the function. They now have two APIs to get that type. `getInterfaceType`
returns the unsubstituted type of the generic interface, and
`getArgumentType`/`getReturnValueType` produce the substituted type that is used at
apply sites.
Requested by gottesmm during review.
Update the variable naming conventions to lower-camel.
Run clang-format.
I'm sure I missed some local variables somewhere--this was a best
effort.
The XXOptUtils.h convention is already established and parallels
the SIL/XXUtils convention.
New:
- InstOptUtils.h
- CFGOptUtils.h
- BasicBlockOptUtils.h
- ValueLifetime.h
Removed:
- Local.h
- Two conflicting CFG.h files
This reorganization is helpful before I introduce more
utilities for block cloning similar to SinkAddressProjections.
Move the control flow utilies out of Local.h, which was an
unreadable, unprincipled mess. Rename it to InstOptUtils.h, and
confine it to small APIs for working with individual instructions.
These are the optimizer's additions to /SIL/InstUtils.h.
Rename CFG.h to CFGOptUtils.h and remove the one in /Analysis. Now
there is only SIL/CFG.h, resolving the naming conflict within the
swift project (this has always been a problem for source tools). Limit
this header to low-level APIs for working with branches and CFG edges.
Add BasicBlockOptUtils.h for block level transforms (it makes me sad
that I can't use BBOptUtils.h, but SIL already has
BasicBlockUtils.h). These are larger APIs for cloning or removing
whole blocks.
Structurally prevent a number of common anti-patterns involving generic
signatures by separating the interface into GenericSignature and the
implementation into GenericSignatureBase. In particular, this allows
the comparison operators to be deleted which forces callers to
canonicalize the signature or ask to compare pointers explicitly.
Add `llvm_unreachable` to mark covered switches which MSVC does not
analyze correctly and believes that there exists a path through the
function without a return value.
Where possible, pass around a ClassDecl or a CanType instead of a
SILType that might wrap a metatype; the unwrapping logic was
repeated in several places.
Also add a FIXME for a bug I found by inspection.