Make filter APIs for UseList chainable by adding them to Sequence where Element == Operand
For example, it allows to write:
```
let singleUse = value.uses.ignoreDebugUses.ignoreUsers(ofType: EndAccessInst.self).singleUse
```
Also, add `UseList.getSingleUser(notOfType:)`
Introduce two modes of bridging:
* inline mode: this is basically how it worked so far. Using full C++ interop which allows bridging functions to be inlined.
* pure mode: bridging functions are not inlined but compiled in a cpp file. This allows to reduce the C++ interop requirements to a minimum. No std/llvm/swift headers are imported.
This change requires a major refactoring of bridging sources. The implementation of bridging functions go to two separate files: SILBridgingImpl.h and OptimizerBridgingImpl.h.
Depending on the mode, those files are either included in the corresponding header files (inline mode), or included in the c++ file (pure mode).
The mode can be selected with the BRIDGING_MODE cmake variable. By default it is set to the inline mode (= existing behavior). The pure mode is only selected in certain configurations to work around C++ interop issues:
* In debug builds, to workaround a problem with LLDB's `po` command (rdar://115770255).
* On windows to workaround a build problem.
`ownership` is a bad name in `LoadInst`, because it hides `Value.ownership`.
Therefore rename it to `loadOwnership`.
Do the same for ownership in StoreInst to be consistent.
* add the StaticInitCloner utility
* remove bridging of `copyStaticInitializer` and `createStaticInitializer`
* add `Context.mangleOutlinedVariable` and `Context.createGlobalVariable`