When an actual instance of a distributed actor is on the local node, it is
has the capabilities of `Actor`. This isn't expressible directly in the type
system, because not all `DistributedActor`s are `Actor`s, nor is the
opposite true.
Instead, provide an API `DistributedActor.asLocalActor` that can only
be executed when the distributed actor is known to be local (because
this API is not itself `distributed`), and produces an existential
`any Actor` referencing that actor. The resulting existential value
carries with it a special witness table that adapts any type
conforming to the DistributedActor protocol into a type that conforms
to the Actor protocol. It is "as if" one had written something like this:
extension DistributedActor: Actor { }
which, of course, is not permitted in the language. Nonetheless, we
lovingly craft such a witness table:
* The "type" being extended is represented as an extension context,
rather than as a type context. This hasn't been done before, all Swift
runtimes support it uniformly.
* A special witness is provided in the Distributed library to implement
the `Actor.unownedExecutor` operation. This witness back-deploys to the
Swift version were distributed actors were introduced (5.7). On Swift
5.9 runtimes (and newer), it will use
`DistributedActor.unownedExecutor` to support custom executors.
* The conformance of `Self: DistributedActor` is represented as a
conditional requirement, which gets satisfied by the witness table
that makes the type a `DistributedActor`. This makes the special
witness work.
* The witness table is *not* visible via any of the normal runtime
lookup tables, because doing so would allow any
`DistributedActor`-conforming type to conform to `Actor`, which would
break the safety model.
* The witness table is emitted on demand in any client that needs it.
In back-deployment configurations, there may be several witness tables
for the same concrete distributed actor conforming to `Actor`.
However, this duplication can only be observed under fairly extreme
circumstances (where one is opening the returned existential and
instantiating generic types with the distributed actor type as an
`Actor`, then performing dynamic type equivalence checks), and will
not be present with a new Swift runtime.
All of these tricks together mean that we need no runtime changes, and
`asLocalActor` back-deploys as far as distributed actors, allowing it's
use in `#isolation` and the async for...in loop.
Optionally, the dependency to the initialization of the global can be specified with a dependency token `depends_on <token>`.
This is usually a `builtin "once"` which calls the initializer for the global variable.
Concurrency runtime expects discarding task operation entrypoint
function not to have result type, but the current SILGen
implementation generates reabstraction thunk to convert `() -> Void`
to `() -> T` for the operation function.
Since the `T` is always `Void` for DiscardingTG, the mismatch of result
type expectation does not cause any problem on most platforms, but the
signature mismatch causes a problem on WebAssembly.
This patch introduces new builtin operations for creating discarding
task, which always takes `() -> Void` as the operation function type.
* `alloc_vector`: allocates an uninitialized vector of elements on the stack or in a statically initialized global
* `vector`: creates an initialized vector in a statically initialized global
This commit just introduces the instruction. In a subsequent commit, I am going
to add support to SILGen to emit this. This ensures that when we assign into a
tuple var we initialize it with one instruction instead of doing it in pieces.
The problem with doing it in pieces is that when one is emitting diagnostics it
looks semantically like SILGen actually is emitting code for initializing in
pieces which could be an error.
When rewriting uses of a noncopyable value, the move-only checker failed to take into account
the scope of borrowing uses when establishing the final lifetimes of values. One way this
manifested was when borrowed values get reabstracted from value to in-memory representations,
using a store_borrow instruction, the lifetime of the original borrow would be ended immediately
after the store_borrow begins rather than after the matching end_borrow. Fix this by, first,
changing `store_borrow` to be treated as a borrowing use of its source rather than an
interior-pointer use; this should be more accurate overall since `store_borrow` borrows the
entire source value for a well-scoped duration balanced by `end_borrow` instructions. That done,
change MoveOnlyBorrowToDestructureUtils so that when it sees a borrow use, it ends the borrow
at the end(s) of the use's borrow scope, instead of immediately after the beginning of the use.
This instruction was given forwarding ownership in the original OSSA
implementation. That will obviously lead to memory leaks. Remove
ownership from this instruction and verify that it is never used for
non-trivial types.
This instructions marks the point where all let-fields of a class are initialized.
This is important to ensure the correctness of ``ref_element_addr [immutable]`` for let-fields,
because in the initializer of a class, its let-fields are not immutable, yet.
Codegen is the same, but `begin_dealloc_ref` consumes the operand and produces a new SSA value.
This cleanly splits the liferange to the region before and within the destructor of a class.
I was originally hoping to reuse mark_must_check for multiple types of checkers.
In practice, this is not what happened... so giving it a name specifically to do
with non copyable types makes more sense and makes the code clearer.
Just a pure rename.
When the differentiating a function containing loops, we allocate a linear map context object on the heap. This context object may store non-trivial objects, such as closures, that need to be released explicitly. Fix the autodiff linear map context allocation builtins to correctly release such objects and not just free the memory they occupy.
The new instruction is needed for opaque values mode to allow values to
be extracted from tuples containing packs which will appear for example
as function arguments.
The new instruction wraps a value in a `@sil_weak` box and produces an
owned value. It is only legal in opaque values mode and is transformed
by `AddressLowering` to `store_weak`.
The new instruction unwraps an `@sil_weak` box and produces an owned
value. It is only legal in opaque values mode and is transformed by
`AddressLowering` to `load_weak`.
This instruction is similar to AssignByWrapperInst, but instead of having
a destination operand, the initialization is fully factored into the init
function operand. Like AssignByWrapper, AssignOrInit has partial application
operands of both the initializer and the setter, and DI will lower the
instruction to a call based on whether the assignment is initialization or
a setter call.
Just the $*T -> $*@moveOnly T variant for addresses. Unlike the object version
this acts like a cast rather than something that provides semantics from the
frontend to the optimizer.
The reason why I am using a different instruction for addresses and objects here
is that the object checker doesnt have to deal with things like initialization.
The new alloc_pack_metadata and dealloc_pack_metadata are inserted as
part of IRGen lowering. The former indicates that the next instruction
might result in on-stack pack metadata being emitted. The latter
indicates that this is the position at which metadata emitted on behalf
of its operand should be cleaned up.
"reborrow" flag on the SILArgument avoids transitive walk over the phi operandsi
to determine if it is a reborrow in multiple utilities.
SIL transforms must keep the flag up-to-date by calling SILArgument::setReborrow.
SILVerifier checks to ensure the flag is not invalidated.
Currently "escaping" is not used anywhere.
* [Executors][Distributed] custom executors for distributed actor
* harden ordering guarantees of synthesised fields
* the issue was that a non-default actor must implement the is remote check differently
* NonDefaultDistributedActor to complete support and remote flag handling
* invoke nonDefaultDistributedActorInitialize when necessary in SILGen
* refactor inline assertion into method
* cleanup
* [Executors][Distributed] Update module version for NonDefaultDistributedActor
* Minor docs cleanup
* we solved those fixme's
* add mangling test for non-def-dist-actor
Although nonescaping closures are representationally trivial pointers to their
on-stack context, it is useful to model them as borrowing their captures, which
allows for checking correct use of move-only values across the closure, and
lets us model the lifetime dependence between a closure and its captures without
an ad-hoc web of `mark_dependence` instructions.
During ownership elimination, We eliminate copy/destroy_value instructions and
end the partial_apply's lifetime with an explicit dealloc_stack as before,
for compatibility with existing IRGen and non-OSSA aware passes.
This instruction can be inserted by Onone optimizations as a replacement for deleted instructions to
ensure that it's possible to single step on its location.
This allows dynamically indexing into tuples. IRGen not yet
implemented.
I think I'm going to need a type_refine_addr instruction in
order to handle substitutions into the operand type that
eliminate the outer layer of tuple-ness. Gonna handle that
in a follow-up commit.
Having added these, I'm not entirely sure we couldn't just use
alloc_stack and dealloc_stack. Well, if we find ourselves adding
a lot of redundancy with those instructions (e.g. around DI), we
can always go back and rip these out.
- SILPackType carries whether the elements are stored directly
in the pack, which we're not currently using in the lowering,
but it's probably something we'll want in the final ABI.
Having this also makes it clear that we're doing the right
thing with substitution and element lowering. I also toyed
with making this a scalar type, which made it necessary in
various places, although eventually I pulled back to the
design where we always use packs as addresses.
- Pack boundaries are a core ABI concept, so the lowering has
to wrap parameter pack expansions up as packs. There are huge
unimplemented holes here where the abstraction pattern will
need to tell us how many elements to gather into the pack,
but a naive approach is good enough to get things off the
ground.
- Pack conventions are related to the existing parameter and
result conventions, but they're different on enough grounds
that they deserve to be separated.